
Coursework 4
This coursework is worth 10% and is due on 12th December at 16:00. You are
asked to implement a compiler for theWHILE language that targets the assem-
bler language provided by Jasmin. This assembler is available from

http://jasmin.sourceforge.net

There is a user guide for Jasmin

http://jasmin.sourceforge.net/guide.html

and also a description of some of the instructions that the JVM understands

http://jasmin.sourceforge.net/instructions.html

If you generated a correct assembler file for Jasmin, for example loops.j, you
can use

java -jar jasmin-2.4/jasmin.jar loops.j

in order to translate it to Java byte code. The resulting class file can be run with

java loops

where you might need to give the correct path to the class file. There are also
other resources about Jasmin on the Internet, for example http://goo.gl/Qj8TeK
and http://goo.gl/fpVNyT .

You need to submit a document containing the answers for the two questions
below. You can do the implementation in any programming language you like,
but youneed to submit the source codewithwhich you answered the questions.
Otherwise the submission will not be counted. However, the coursework will
only be judged according to the answers. You can submit your answers in a
txt-file or as pdf.

Question 1 (marked with 2%)
You need to lex and parse WHILE programs and submit the assembler instruc-
tions for the Fibonacci program and for the program you submiĴed in Course-
work 2 in Question 3. The laĴer should be so modified that a user can input the
upper bound on the console (in the original question it was fixed to 100).

1

http://jasmin.sourceforge.net
http://jasmin.sourceforge.net/guide.html
http://jasmin.sourceforge.net/instructions.html
http://goo.gl/Qj8TeK
http://goo.gl/fpVNyT


Question 2 (marked with 2%)
Extend the syntax of you language so that it contains also for-loops, like

for Id := AExp upto AExp do Block

The intendedmeaning is to first assign the variable Id the value of the first arith-
metic expression, then go through the loop, at the end increase the value of the
variable by 1, and finally test wether the value is not less or equal to the value
of the second arithmetic expression. For example the following instance of a
for-loop is supposed to print out the numbers 2, 3, 4.

for i := 2 upto 4 do {
write i

}

There are two ways how this can be implemented: one is to adapt the code
generation part of the compiler and generate specific code for for-loops; the
other is to translate the abstract syntax tree of for-loops into an abstract syntax
tree using existing language constructs. For example the loop above could be
translated to the following while-loop:

i := 2;
while (i <= 4) do {

write i;
i := i + 1;

}

In this question you are supposed to give the assembler instructions for the
program

for i := 1 upto 10000 do {
for i := 1 upto 10000 do {
skip
}

}

Further Information
The Java infrastructure unfortunately does not contain an assembler out-of-
the-box (therefore you need to download the additional package Jasmin—see
above). But it does contain a disassembler, called javap. A dissembler does
the “opposite” of an assembler: it generates readable assembler code from Java
byte code. Have a look at the following example: Compile using the usual Java
compiler the simple Hello World program below:

2



1 class HelloWorld {
2 public static void main(String[] args) {
3 System.out.println("Hello World!");
4 }
5 }

You can use the command

javap -v HelloWorld

to see the assembler instructions of the Java byte code that has been generated
for this program. You can compare this with the code generated for the Scala
version of Hello World.

1 object HelloWorld {
2 def main(args: Array[String]) {
3 println("Hello World!")
4 }
5 }

Library Functions
You need to generate code for the commands write and read. This will require
the addition of some “library” functions to your generated code. The first com-
mand even needs two versions, because youmight want to write out an integer
or a string. The Java byte code will need two separate functions for this. For
writing out an integer, you can use the assembler code

.method public static write(I)V
.limit locals 5
.limit stack 5
iload 0
getstatic java/lang/System/out Ljava/io/PrintStream;
swap
invokevirtual java/io/PrintStream/println(I)V
return

.end method

This functionwill invoke Java’s println function for integers. Then if you need
to generate code for write x where x is an integer variable, you can generate

iload n
invokestatic XXX/XXX/write(I)V

3



where n is the index where the value of the variable x is stored. The XXX/XXX
needs to be replaced with the class name which you use to generate the code
(for example fib/fib in case of the Fibonacci numbers).

Writing out a string is similar. The corresponding library function uses
strings instead of integers:

.method public static writes(Ljava/lang/String;)V
.limit stack 2
.limit locals 2
getstatic java/lang/System/out Ljava/io/PrintStream;
aload 0
invokevirtual java/io/PrintStream/println(Ljava/lang/String;)V
return

.end method

The code that needs to be generated for write "some_string" commands is

ldc "some_string"
invokestatic XXX/XXX/writes(Ljava/lang/String;)V

Again you need to adjust the XXX/XXX part in each call.
The code for read is more complicated. The reason is that inpuĴing a string

will need to be transformed into an integer. The code in Figure 1 does this. It
can be called with

invokestatic XXX/XXX/read()I
istore n

where n is the index of the variable that requires an input.

4



.method public static read()I
.limit locals 10
.limit stack 10

ldc 0
istore 1 ; this will hold our final integer

Label1:
getstatic java/lang/System/in Ljava/io/InputStream;
invokevirtual java/io/InputStream/read()I
istore 2
iload 2
ldc 10 ; the newline delimiter
isub
ifeq Label2
iload 2
ldc 32 ; the space delimiter
isub
ifeq Label2

iload 2
ldc 48 ; we have our digit in ASCII, have to subtract it from 48
isub
ldc 10
iload 1
imul
iadd
istore 1
goto Label1

Label2:
;when we come here we have our integer computed in Local Variable 1
iload 1
ireturn

.end method

Figure 1: Assembler code for reading an integer from the console.

5


