
Compilers and
Formal Languages (1)

Antikythera automaton, 100 BC (Archimedes?)

Email: christian.urban at kcl.ac.uk
Office: N7.07 (North Wing, Bush House)
Slides: KEATS

CFL 01, King’s College London – p. 1/1

TheGoal of this Course

Write ACompiler

lexer parser code gen

CFL 01, King’s College London – p. 2/1

TheGoal of this Course

Write ACompiler

lexer parser code gen

CFL 01, King’s College London – p. 2/1

lexer input: a string
”read(n);”

lexer output: a sequence of tokens
key(read); lpar; id(n); rpar; semi

TheGoal of this Course

Write ACompiler

lexer parser code gen

CFL 01, King’s College London – p. 2/1

lexer input: a string
”read(n);”

lexer output: a sequence of tokens
key(read); lpar; id(n); rpar; semi

lexing⇒ recognising words (Stone of Rosetta)

TheGoal of this Course

Write ACompiler

lexer parser code gen

CFL 01, King’s College London – p. 2/1

parser input: a sequence of token
parser output: an abstract syntax tree

read

lpar n rpar

TheGoal of this Course

Write ACompiler

lexer parser code gen

CFL 01, King’s College London – p. 2/1

code generator:
istore 2
iload 2
ldc 10
isub
ifeq Label2
iload 2
...

TheGoal of this Course

Write ACompiler

lexer parser code gen

CFL 01, King’s College London – p. 2/1

code generator:
istore 2
iload 2
ldc 10
isub
ifeq Label2
iload 2
...

0 200 400 600 800 1,000 1,200

0

100

200

300

400

n

se
cs

The subject is quite old
Turing Machines, 1936
Regular Expressions, 1956
The first compiler for COBOL, 1957
(Grace Hopper)
But surprisingly research papers are still
published nowadays

Grace Hopper
(she made it to David Letterman’s Tonight Show,
http://www.youtube.com/watch?v=aZOxtURhfEU)

CFL 01, King’s College London – p. 3/1

http://www.youtube.com/watch?v=aZOxtURhfEU

WhyBother?
Ruby, Python, Java

5 10 15 20 25 30
0
5

10
15
20
25
30

n

tim
e
in
se
cs Python

Ruby

5 10 15 20 25 30
0
5

10
15
20
25
30

n

tim
e
in
se
cs Java

Us (after next lecture)

0 5,000 10,000
0
5

10
15
20
25
30

n

tim
e
in
se
cs

0 2 · 106 4 · 106 6 · 106
0
5

10
15
20
25
30

n
tim

e
in
se
cs

matching [a?]{n}[a]{n} and [a*]*b against a...a︸︷︷︸
n

CFL 01, King’s College London – p. 4/1

Lectures 1 - 5

transforming strings into structured data

Lexing

based on regular expressions

(recognising “words”)

Parsing
(recognising “sentences”)

CFL 01, King’s College London – p. 5/1

Stone of Rosetta

Lectures 1 - 5

transforming strings into structured data

Lexing based on regular expressions

(recognising “words”)

Parsing
(recognising “sentences”)

CFL 01, King’s College London – p. 5/1

Stone of Rosetta

Familiar Regular Expr.
[a-z0-9_.-]+ @ [a-z0-9.-]+ . [a-z.]{2,6}

re* matches 0 or more times
re+ matches 1 or more times
re? matches 0 or 1 times
re{n} matches exactly n number of times
re{n,m} matches at least n and at most m times
[...] matches any single character inside the brackets
[^...] matches any single character not inside the

brackets
a-zA-Z character ranges
\d matches digits; equivalent to [0-9]
. matches every character except newline
(re) groups regular expressions and remembers the

matched text
CFL 01, King’s College London – p. 6/1

Today

While the ultimate goal is to implement a small
compiler (a really small one for the JVM)…

Let’s start with:
a web-crawler
an email harvester
(a web-scraper)

CFL 01, King’s College London – p. 7/1

AWeb-Crawler

1 given an URL, read the corresponding webpage
2 extract all links from it
3 call the web-crawler again for all these links

CFL 01, King’s College London – p. 8/1

AWeb-Crawler

1 given an URL, read the corresponding webpage
2 if not possible print, out a problem
3 if possible, extract all links from it
4 call the web-crawler again for all these links

(we need a bound for the number of recursive calls)
(the purpose is to check all links on my own webpage)

CFL 01, King’s College London – p. 9/1

AWeb-Crawler

1 given an URL, read the corresponding webpage
2 if not possible print, out a problem
3 if possible, extract all links from it
4 call the web-crawler again for all these links

(we need a bound for the number of recursive calls)
(the purpose is to check all links on my own webpage)

CFL 01, King’s College London – p. 9/1

CFL 01, King’s College London – p. 10/1

Server

GET request

webpage

POST data Browser

Scala
A simple Scala function for reading webpages:

import io.Source

def get_page(url: String) : String = {
Source.fromURL(url).take(10000).mkString

}

get_page(”””http://www.inf.kcl.ac.uk/staff/urbanc/”””)

A slightly more complicated version for handling errors:

def get_page(url: String) : String = {
Try(Source.fromURL(url).take(10000).mkString).

getOrElse { println(s” Problem with: $url”); ””}
}

CFL 01, King’s College London – p. 11/1

Scala
A simple Scala function for reading webpages:

import io.Source

def get_page(url: String) : String = {
Source.fromURL(url).take(10000).mkString

}

get_page(”””http://www.inf.kcl.ac.uk/staff/urbanc/”””)

A slightly more complicated version for handling errors:

def get_page(url: String) : String = {
Try(Source.fromURL(url).take(10000).mkString).

getOrElse { println(s” Problem with: $url”); ””}
}

CFL 01, King’s College London – p. 11/1

Scala
A simple Scala function for reading webpages:

import io.Source

def get_page(url: String) : String = {
Source.fromURL(url).take(10000).mkString

}

get_page(”””http://www.inf.kcl.ac.uk/staff/urbanc/”””)

A slightly more complicated version for handling errors:

def get_page(url: String) : String = {
Try(Source.fromURL(url).take(10000).mkString).

getOrElse { println(s” Problem with: $url”); ””}
}

CFL 01, King’s College London – p. 11/1

ARegular Expression
… is a pattern or template for specifying strings

”https?://[^”]*”

matches for example
”http://www.foobar.com”
”https://www.tls.org”

CFL 01, King’s College London – p. 12/1

ARegular Expression
… is a pattern or template for specifying strings

””””https?://[^”]*””””.r

matches for example
”http://www.foobar.com”
”https://www.tls.org”

CFL 01, King’s College London – p. 12/1

FindingOperations
rexp.findAllIn(string)

returns a list of all (sub)strings that match the
regular expression

rexp.findFirstIn(string)

returns either
None if no (sub)string matches or
Some(s) with the first (sub)string

CFL 01, King’s College London – p. 13/1

val http_pattern = ””””https?://[^”]*””””.r

def unquote(s: String) = s.drop(1).dropRight(1)

def get_all_URLs(page: String) : Set[String] =
http_pattern.findAllIn(page).map(unquote).toSet

def crawl(url: String, n: Int) : Unit = {
if (n == 0) ()
else {

println(s”Visiting: $n $url”)
for (u <- get_all_URLs(get_page(url))) crawl(u, n - 1)

}
}

crawl(some_start_URL, 2)

CFL 01, King’s College London – p. 14/1

A version that only crawls links in “my” domain:
val my_urls = ”””urbanc”””.r

def crawl(url: String, n: Int) : Unit = {
if (n == 0) ()
else if (my_urls.findFirstIn(url) == None) {

println(s”Visiting: $n $url”)
get_page(url); ()

}
else {

println(s”Visiting: $n $url”)
for (u <- get_all_URLs(get_page(url))) crawl(u, n - 1)

}
}

CFL 01, King’s College London – p. 15/1

A little email harvester:
val http_pattern = ””””https?://[^”]*””””.r
val email_pattern =

”””([a-z0-9_\.-]+)@([\da-z\.-]+)\.([a-z\.]{2,6})”””.r

def print_str(s: String) =
if (s == ””) () else println(s)

def crawl(url: String, n: Int) : Unit = {
if (n == 0) ()
else {

println(s”Visiting: $n $url”)
val page = get_page(url)
print_str(email_pattern.findAllIn(page).mkString(”\n”))
for (u <- get_all_URLs(page).par) crawl(u, n - 1)

}
}

http://net.tutsplus.com/tutorials/other/8-regular-expressions-you-should-know/

CFL 01, King’s College London – p. 16/1

http://net.tutsplus.com/tutorials/other/8-regular-expressions-you-should-know/

Regular Expressions
Their inductive definition:

CFL 01, King’s College London – p. 17/1

r ::= 0 null
| 1 empty string / ”” / []
| c character
| r1 + r2 alternative / choice
| r1 · r2 sequence
| r∗ star (zero or more)

Regular Expressions
Their inductive definition:

CFL 01, King’s College London – p. 17/1

r ::= 0 null
| 1 empty string / ”” / []
| c character
| r1 + r2 alternative / choice
| r1 · r2 sequence
| r∗ star (zero or more)

abstract class Rexp
case object ZERO extends Rexp
case object ONE extends Rexp
case class CHAR(c: Char) extends Rexp
case class ALT(r1: Rexp, r2: Rexp) extends Rexp
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
case class STAR(r: Rexp) extends Rexp

Regular Expressions
In Scala:

def OPT(r: Rexp) = ALT(r, ONE)

def NTIMES(r: Rexp, n: Int) : Rexp = n match {
case 0 => ONE
case 1 => r
case n => SEQ(r, NTIMES(r, n - 1))

}

CFL 01, King’s College London – p. 18/1

Strings
…are lists of characters. For example ”hello”

[h, e, l, l, o] or just hello

the empty string: [] or ””

the concatenation of two strings:

s1 @ s2

foo @ bar = foobar, baz @ [] = baz

CFL 01, King’s College London – p. 19/1

Languages, Strings
Strings are lists of characters, for example

[], abc (Pattern match: c :: s)

A language is a set of strings, for example

{[], hello, foobar, a, abc}

Concatenation of strings and languages
foo @ bar = foobar

A @ B def
= {s1 @ s2 | s1 ∈ A ∧ s2 ∈ B}

CFL 01, King’s College London – p. 20/1

TheMeaning of a
Regular Expression

CFL 01, King’s College London – p. 21/1

L(0) def
= {}

L(1) def
= {[]}

L(c) def
= {[c]}

L(r1 + r2)
def
= L(r1) ∪ L(r2)

L(r1 · r2)
def
= {s1 @ s2 | s1 ∈ L(r1) ∧ s2 ∈ L(r2)}

L(r∗) def
=

∪
0≤n L(r)n

L(r)0 def
= {[]}

L(r)n+1 def
= L(r)@L(r)n

(append on sets)
{s1@s2 | s1 ∈ L(r) ∧ s2 ∈ L(r)n}

TheMeaning of a
Regular Expression

CFL 01, King’s College London – p. 21/1

L(0) def
= {}

L(1) def
= {[]}

L(c) def
= {[c]}

L(r1 + r2)
def
= L(r1) ∪ L(r2)

L(r1 · r2)
def
= {s1 @ s2 | s1 ∈ L(r1) ∧ s2 ∈ L(r2)}

L(r∗) def
=

∪
0≤n L(r)n

L(r)0 def
= {[]}

L(r)n+1 def
= L(r)@L(r)n

(append on sets)
{s1@s2 | s1 ∈ L(r) ∧ s2 ∈ L(r)n}

TheMeaning of a
Regular Expression

CFL 01, King’s College London – p. 21/1

L(0) def
= {}

L(1) def
= {[]}

L(c) def
= {[c]}

L(r1 + r2)
def
= L(r1) ∪ L(r2)

L(r1 · r2)
def
= {s1 @ s2 | s1 ∈ L(r1) ∧ s2 ∈ L(r2)}

L(r∗) def
=

∪
0≤n L(r)n

L(r)0 def
= {[]}

L(r)n+1 def
= L(r)@L(r)n (append on sets)

{s1@s2 | s1 ∈ L(r) ∧ s2 ∈ L(r)n}

TheMeaning of a
Regular Expression

CFL 01, King’s College London – p. 21/1

L(0) def
= {}

L(1) def
= {[]}

L(c) def
= {[c]}

L(r1 + r2)
def
= L(r1) ∪ L(r2)

L(r1 · r2)
def
= {s1 @ s2 | s1 ∈ L(r1) ∧ s2 ∈ L(r2)}

L(r∗) def
=

∪
0≤n L(r)n

L(r)0 def
= {[]}

L(r)n+1 def
= L(r)@L(r)n (append on sets)

{s1@s2 | s1 ∈ L(r) ∧ s2 ∈ L(r)n}

TheMeaning ofMatching

A regular expression r matches a string
s provided

s ∈ L(r)

…and the point of the next lecture is to decide this
problem as fast as possible (unlike Python, Ruby,
Java)

CFL 01, King’s College London – p. 22/1

Written Exam

Accounts for 80%.

You will understand the question “Is this relevant
for the exam?” is very demotivating for the
lecturer!

Deal: Whatever is in the homework (and is not
marked “optional”) is relevant for the exam.

Each lecture has also a handout. There are also
handouts about notation and Scala.

CFL 01, King’s College London – p. 23/1

Coursework
Accounts for 20%. Two strands. Choose one!

Strand 1
four programming
tasks:

matcher (4%, 20.10.)
lexer (5%, 03.11.)
parser (5%, 24.11.)
compiler (6%, 13.12.)

Strand 2
one task: prove the
correctness of a regular
expression matcher in
the Isabelle theorem
prover
20%, submission 13.12.

Solving more than one strand will not give you more marks.
The exam will contain in much, much smaller form
elements from both (but will also be in lectures and HW).

CFL 01, King’s College London – p. 24/1

Questions?

CFL 01, King’s College London – p. 25/1

