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Grammars
A (context-free) grammar G consists of
a finite set of nonterminal symbols (upper case)
a finite terminal symbols or tokens (lower case)
a start symbol (which must be a nonterminal)
a set of rules

A → rhs
where rhs are sequences involving terminals and
nonterminals, including the empty sequence ϵ.

We also allow rules
A → rhs1|rhs2| . . .
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Palindromes

S → ϵ
S → a · S · a
S → b · S · b

or

S → ϵ | a · S · a | b · S · b
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Arithmetic Expressions

E → num_token
E → E · + · E
E → E · − · E
E → E · ∗ · E
E → (·E·)

1 + 2 * 3 + 4
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A CFG Derivation

...1 Begin with a string containing only the start
symbol, say S

...2 Replace any nonterminal X in the string by the
right-hand side of some production X → rhs

...3 Repeat 2 until there are no nonterminals

S → . . . → . . . → . . . → . . .
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Example Derivation

S → ϵ | a · S · a | b · S · b

S → aSa
→ abSba
→ abaSaba
→ abaaba
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Example Derivation
E → num_token
E → E · + · E
E → E · − · E
E → E · ∗ · E
E → (·E·)

E → E ∗ E
→ E + E ∗ E
→ E + E ∗ E + E
→+ 1 + 2 ∗ 3 + 4

E → E + E
→ E + E + E
→ E + E ∗ E + E
→+ 1 + 2 ∗ 3 + 4
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Language of a CFG
Let G be a context-free grammar with start
symbol S. Then the language L(G) is:

{c1 . . . cn | ∀i. ci ∈ T ∧ S →∗ c1 . . . cn}

Terminals, because there are no rules for
replacing them.
Once generated, terminals are “permanent”.
Terminals ought to be tokens of the language
(but can also be strings).
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Parse Trees
E → F | F · ∗ · F
F → T | T · + · T | T · − · T
T → num_token | (·E·)
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Arithmetic Expressions

E → num_token
E → E · + · E
E → E · − · E
E → E · ∗ · E
E → (·E·)

A CFG is left-recursive if it has a nonterminal E
such that E →+ E · . . .
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Ambiguous Grammars

A grammar is ambiguous if there is a string that
has at least two different parse trees.

E → num_token
E → E · + · E
E → E · − · E
E → E · ∗ · E
E → (·E·)

1 + 2 * 3 + 4
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Dangling Else

Another ambiguous grammar:

E → if E then E
| if E then E else E
| …

if a then if x then y else c
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Parser Combinators

Parser combinators:
list of tokens︸ ︷︷ ︸

input
⇒ set of (parsed input, unparsed input)︸ ︷︷ ︸

output

sequencing
alternative
semantic action
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Alternative parser (code p || q)

apply p and also q; then combine the outputs

p(input) ∪ q(input)
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Sequence parser (code p ∼ q)

apply first p producing a set of pairs
then apply q to the unparsed parts
then combine the results:

((output1, output2), unparsed part)

{((o1, o2), u2) |
(o1, u1) ∈ p(input)∧
(o2, u2) ∈ q(u1)}
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Function parser (code p ⇒ f )

apply p producing a set of pairs
then apply the function f to each first
component

{(f (o1), u1) | (o1, u1) ∈ p(input)}

f is the semantic action (“what to do with the
parsed input”)
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Semantic Actions
Addition

T ∼ + ∼ E ⇒ f((x, y), z) ⇒ x + z︸ ︷︷ ︸
semantic action

Multiplication

F ∼ ∗ ∼ T ⇒ f((x, y), z) ⇒ x ∗ z

Parenthesis

( ∼ E ∼ ) ⇒ f((x, y), z) ⇒ y
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Types of Parsers
Sequencing: if p returns results of type T , and
q results of type S, then p ∼ q returns results of
type

T × S

Alternative: if p returns results of type T then
q must also have results of type T , and p || q
returns results of type

T

Semantic Action: if p returns results of type T
and f is a function from T to S, then p ⇒ f
returns results of type

S
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Input Types of Parsers

input: string
output: set of (output_type, string)

actually it can be any input type as long as it is a
kind of sequence (for example a string)

AFL 06, King’s College London, 30. October 2013 – p. 19/30



Input Types of Parsers

input: string
output: set of (output_type, string)

actually it can be any input type as long as it is a
kind of sequence (for example a string)

AFL 06, King’s College London, 30. October 2013 – p. 19/30



Scannerless Parsers

input: string
output: set of (output_type, string)

but lexers are better when whitespaces or
comments need to be filtered out; then input is a
sequence of tokens
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Successful Parses

input: string
output: set of (output_type, string)

a parse is successful whenever the input has been
fully “consumed” (that is the second component is
empty)
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Abstract Parsers

1 abstract class Parser[I, T] {
2 def parse(ts: I): Set[(T, I)]
3

4 def parse_all(ts: I) : Set[T] =
5 for ((head, tail) <- parse(ts); if (tail.isEmpty))
6 yield head
7 }
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1 class SeqParser[I, T, S](p: => Parser[I, T],
2 q: => Parser[I, S])
3 extends Parser[I, (T, S)] {
4 def parse(sb: I) =
5 for ((head1, tail1) <- p.parse(sb);
6 (head2, tail2) <- q.parse(tail1))
7 yield ((head1, head2), tail2)
8 }
9

10 class AltParser[I, T](p: => Parser[I, T],
11 q: => Parser[I, T])
12 extends Parser[I, T] {
13 def parse(sb: I) = p.parse(sb) ++ q.parse(sb)
14 }
15

16 class FunParser[I, T, S](p: => Parser[I, T], f: T => S)
17 extends Parser[I, S] {
18 def parse(sb: I) =
19 for ((head, tail) <- p.parse(sb))
20 yield (f(head), tail)
21 }
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Two Grammars

Which languages are recognised by the following
two grammars?

S → 1 · S · S
| ϵ

U → 1 · U
| ϵ
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Ambiguous Grammars
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While-Language
Stmt → skip

| Id := AExp
| if BExp then Block else Block
| while BExp do Block

Stmts → Stmt ; Stmts
| Stmt

Block → {Stmts}
| Stmt

AExp → …
BExp → …
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An Interpreter

{
x := 5;
y := x ∗ 3;
y := x ∗ 4;
x := u ∗ 3

}

the interpreter has to record the value of x before
assigning a value to y

eval(stmt, env)
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Chomsky Normal Form

All rules must be of the form

A → a

or

A → B · C
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CYK Algorithm

S → N · P
P → V · N
N → N · N
N → students | Jeff | geometry | trains
V → trains

Jeff trains geometry students
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CYK Algorithm

runtime is O(n3)

grammars need to be transferred into CNF
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