
Automata and
Formal Languages (6)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also home work is there)

AFL 06, King’s College London, 30. October 2013 – p. 1/30

Grammars
A (context-free) grammar G consists of
a finite set of nonterminal symbols (upper case)
a finite terminal symbols or tokens (lower case)
a start symbol (which must be a nonterminal)
a set of rules

A → rhs
where rhs are sequences involving terminals and
nonterminals, including the empty sequence ϵ.

We also allow rules
A → rhs1|rhs2| . . .

AFL 06, King’s College London, 30. October 2013 – p. 2/30

Grammars
A (context-free) grammar G consists of
a finite set of nonterminal symbols (upper case)
a finite terminal symbols or tokens (lower case)
a start symbol (which must be a nonterminal)
a set of rules

A → rhs
where rhs are sequences involving terminals and
nonterminals, including the empty sequence ϵ.
We also allow rules

A → rhs1|rhs2| . . .

AFL 06, King’s College London, 30. October 2013 – p. 2/30

Palindromes

S → ϵ
S → a · S · a
S → b · S · b

or

S → ϵ | a · S · a | b · S · b

AFL 06, King’s College London, 30. October 2013 – p. 3/30

Palindromes

S → ϵ
S → a · S · a
S → b · S · b

or

S → ϵ | a · S · a | b · S · b

AFL 06, King’s College London, 30. October 2013 – p. 3/30

Arithmetic Expressions

E → num_token
E → E · + · E
E → E · − · E
E → E · ∗ · E
E → (·E·)

1 + 2 * 3 + 4

AFL 06, King’s College London, 30. October 2013 – p. 4/30

Arithmetic Expressions

E → num_token
E → E · + · E
E → E · − · E
E → E · ∗ · E
E → (·E·)

1 + 2 * 3 + 4

AFL 06, King’s College London, 30. October 2013 – p. 4/30

A CFG Derivation

...1 Begin with a string containing only the start
symbol, say S

...2 Replace any nonterminal X in the string by the
right-hand side of some production X → rhs

...3 Repeat 2 until there are no nonterminals

S → . . . → . . . → . . . → . . .

AFL 06, King’s College London, 30. October 2013 – p. 5/30

Example Derivation

S → ϵ | a · S · a | b · S · b

S → aSa
→ abSba
→ abaSaba
→ abaaba

AFL 06, King’s College London, 30. October 2013 – p. 6/30

Example Derivation
E → num_token
E → E · + · E
E → E · − · E
E → E · ∗ · E
E → (·E·)

E → E ∗ E
→ E + E ∗ E
→ E + E ∗ E + E
→+ 1 + 2 ∗ 3 + 4

E → E + E
→ E + E + E
→ E + E ∗ E + E
→+ 1 + 2 ∗ 3 + 4

AFL 06, King’s College London, 30. October 2013 – p. 7/30

Example Derivation
E → num_token
E → E · + · E
E → E · − · E
E → E · ∗ · E
E → (·E·)

E → E ∗ E
→ E + E ∗ E
→ E + E ∗ E + E
→+ 1 + 2 ∗ 3 + 4

E → E + E
→ E + E + E
→ E + E ∗ E + E
→+ 1 + 2 ∗ 3 + 4

AFL 06, King’s College London, 30. October 2013 – p. 7/30

Language of a CFG
Let G be a context-free grammar with start
symbol S. Then the language L(G) is:

{c1 . . . cn | ∀i. ci ∈ T ∧ S →∗ c1 . . . cn}

Terminals, because there are no rules for
replacing them.
Once generated, terminals are “permanent”.
Terminals ought to be tokens of the language
(but can also be strings).

AFL 06, King’s College London, 30. October 2013 – p. 8/30

Language of a CFG
Let G be a context-free grammar with start
symbol S. Then the language L(G) is:

{c1 . . . cn | ∀i. ci ∈ T ∧ S →∗ c1 . . . cn}

Terminals, because there are no rules for
replacing them.
Once generated, terminals are “permanent”.
Terminals ought to be tokens of the language
(but can also be strings).

AFL 06, King’s College London, 30. October 2013 – p. 8/30

Parse Trees
E → F | F · ∗ · F
F → T | T · + · T | T · − · T
T → num_token | (·E·)

..E.

F

.

T

.

(E)

.

F * F

.

T

.

2

.

T

.

3

.

+

.

T

.

(E)

.

F

.

T + T

.

3

.

4
AFL 06, King’s College London, 30. October 2013 – p. 9/30

(2*3)+(3+4)

Arithmetic Expressions

E → num_token
E → E · + · E
E → E · − · E
E → E · ∗ · E
E → (·E·)

A CFG is left-recursive if it has a nonterminal E
such that E →+ E · . . .

AFL 06, King’s College London, 30. October 2013 – p. 10/30

Arithmetic Expressions

E → num_token
E → E · + · E
E → E · − · E
E → E · ∗ · E
E → (·E·)

A CFG is left-recursive if it has a nonterminal E
such that E →+ E · . . .

AFL 06, King’s College London, 30. October 2013 – p. 10/30

Ambiguous Grammars

A grammar is ambiguous if there is a string that
has at least two different parse trees.

E → num_token
E → E · + · E
E → E · − · E
E → E · ∗ · E
E → (·E·)

1 + 2 * 3 + 4

AFL 06, King’s College London, 30. October 2013 – p. 11/30

Dangling Else

Another ambiguous grammar:

E → if E then E
| if E then E else E
| …

if a then if x then y else c

AFL 06, King’s College London, 30. October 2013 – p. 12/30

Parser Combinators

Parser combinators:
list of tokens︸ ︷︷ ︸

input
⇒ set of (parsed input, unparsed input)︸ ︷︷ ︸

output

sequencing
alternative
semantic action

AFL 06, King’s College London, 30. October 2013 – p. 13/30

Alternative parser (code p || q)

apply p and also q; then combine the outputs

p(input) ∪ q(input)

AFL 06, King’s College London, 30. October 2013 – p. 14/30

Sequence parser (code p ∼ q)

apply first p producing a set of pairs
then apply q to the unparsed parts
then combine the results:

((output1, output2), unparsed part)

{((o1, o2), u2) |
(o1, u1) ∈ p(input)∧
(o2, u2) ∈ q(u1)}

AFL 06, King’s College London, 30. October 2013 – p. 15/30

Function parser (code p ⇒ f)

apply p producing a set of pairs
then apply the function f to each first
component

{(f (o1), u1) | (o1, u1) ∈ p(input)}

f is the semantic action (“what to do with the
parsed input”)

AFL 06, King’s College London, 30. October 2013 – p. 16/30

Function parser (code p ⇒ f)

apply p producing a set of pairs
then apply the function f to each first
component

{(f (o1), u1) | (o1, u1) ∈ p(input)}

f is the semantic action (“what to do with the
parsed input”)

AFL 06, King’s College London, 30. October 2013 – p. 16/30

Semantic Actions
Addition

T ∼ + ∼ E ⇒ f((x, y), z) ⇒ x + z︸ ︷︷ ︸
semantic action

Multiplication

F ∼ ∗ ∼ T ⇒ f((x, y), z) ⇒ x ∗ z

Parenthesis

(∼ E ∼) ⇒ f((x, y), z) ⇒ y

AFL 06, King’s College London, 30. October 2013 – p. 17/30

Semantic Actions
Addition

T ∼ + ∼ E ⇒ f((x, y), z) ⇒ x + z︸ ︷︷ ︸
semantic action

Multiplication

F ∼ ∗ ∼ T ⇒ f((x, y), z) ⇒ x ∗ z

Parenthesis

(∼ E ∼) ⇒ f((x, y), z) ⇒ y

AFL 06, King’s College London, 30. October 2013 – p. 17/30

Semantic Actions
Addition

T ∼ + ∼ E ⇒ f((x, y), z) ⇒ x + z︸ ︷︷ ︸
semantic action

Multiplication

F ∼ ∗ ∼ T ⇒ f((x, y), z) ⇒ x ∗ z

Parenthesis

(∼ E ∼) ⇒ f((x, y), z) ⇒ y

AFL 06, King’s College London, 30. October 2013 – p. 17/30

Types of Parsers
Sequencing: if p returns results of type T , and
q results of type S, then p ∼ q returns results of
type

T × S

Alternative: if p returns results of type T then
q must also have results of type T , and p || q
returns results of type

T

Semantic Action: if p returns results of type T
and f is a function from T to S, then p ⇒ f
returns results of type

S

AFL 06, King’s College London, 30. October 2013 – p. 18/30

Types of Parsers
Sequencing: if p returns results of type T , and
q results of type S, then p ∼ q returns results of
type

T × S

Alternative: if p returns results of type T then
q must also have results of type T , and p || q
returns results of type

T

Semantic Action: if p returns results of type T
and f is a function from T to S, then p ⇒ f
returns results of type

S

AFL 06, King’s College London, 30. October 2013 – p. 18/30

Types of Parsers
Sequencing: if p returns results of type T , and
q results of type S, then p ∼ q returns results of
type

T × S

Alternative: if p returns results of type T then
q must also have results of type T , and p || q
returns results of type

T

Semantic Action: if p returns results of type T
and f is a function from T to S, then p ⇒ f
returns results of type

S
AFL 06, King’s College London, 30. October 2013 – p. 18/30

Input Types of Parsers

input: string
output: set of (output_type, string)

actually it can be any input type as long as it is a
kind of sequence (for example a string)

AFL 06, King’s College London, 30. October 2013 – p. 19/30

Input Types of Parsers

input: string
output: set of (output_type, string)

actually it can be any input type as long as it is a
kind of sequence (for example a string)

AFL 06, King’s College London, 30. October 2013 – p. 19/30

Scannerless Parsers

input: string
output: set of (output_type, string)

but lexers are better when whitespaces or
comments need to be filtered out; then input is a
sequence of tokens

AFL 06, King’s College London, 30. October 2013 – p. 20/30

Successful Parses

input: string
output: set of (output_type, string)

a parse is successful whenever the input has been
fully “consumed” (that is the second component is
empty)

AFL 06, King’s College London, 30. October 2013 – p. 21/30

Abstract Parsers

1 abstract class Parser[I, T] {
2 def parse(ts: I): Set[(T, I)]
3

4 def parse_all(ts: I) : Set[T] =
5 for ((head, tail) <- parse(ts); if (tail.isEmpty))
6 yield head
7 }

AFL 06, King’s College London, 30. October 2013 – p. 22/30

1 class SeqParser[I, T, S](p: => Parser[I, T],
2 q: => Parser[I, S])
3 extends Parser[I, (T, S)] {
4 def parse(sb: I) =
5 for ((head1, tail1) <- p.parse(sb);
6 (head2, tail2) <- q.parse(tail1))
7 yield ((head1, head2), tail2)
8 }
9

10 class AltParser[I, T](p: => Parser[I, T],
11 q: => Parser[I, T])
12 extends Parser[I, T] {
13 def parse(sb: I) = p.parse(sb) ++ q.parse(sb)
14 }
15

16 class FunParser[I, T, S](p: => Parser[I, T], f: T => S)
17 extends Parser[I, S] {
18 def parse(sb: I) =
19 for ((head, tail) <- p.parse(sb))
20 yield (f(head), tail)
21 }

AFL 06, King’s College London, 30. October 2013 – p. 23/30

Two Grammars

Which languages are recognised by the following
two grammars?

S → 1 · S · S
| ϵ

U → 1 · U
| ϵ

AFL 06, King’s College London, 30. October 2013 – p. 24/30

Ambiguous Grammars

..
0
.
20
.

100
.

200
.

300
.

400
.

500
.

600
.

700
.

800
.

900
.

1000
.0 .

5

.

10

.

15

.

20

.

25

.

30

.

1s

.

se
cs

.

unambiguous

AFL 06, King’s College London, 30. October 2013 – p. 25/30

Ambiguous Grammars

..
0
.
20
.

100
.

200
.

300
.

400
.

500
.

600
.

700
.

800
.

900
.

1000
.0 .

5

.

10

.

15

.

20

.

25

.

30

.

1s

.

se
cs

.

unambiguous

.

ambiguous

AFL 06, King’s College London, 30. October 2013 – p. 25/30

While-Language
Stmt → skip

| Id := AExp
| if BExp then Block else Block
| while BExp do Block

Stmts → Stmt ; Stmts
| Stmt

Block → {Stmts}
| Stmt

AExp → …
BExp → …

AFL 06, King’s College London, 30. October 2013 – p. 26/30

An Interpreter

{
x := 5;
y := x ∗ 3;
y := x ∗ 4;
x := u ∗ 3

}

the interpreter has to record the value of x before
assigning a value to y

eval(stmt, env)

AFL 06, King’s College London, 30. October 2013 – p. 27/30

An Interpreter

{
x := 5;
y := x ∗ 3;
y := x ∗ 4;
x := u ∗ 3

}

the interpreter has to record the value of x before
assigning a value to y

eval(stmt, env)

AFL 06, King’s College London, 30. October 2013 – p. 27/30

Chomsky Normal Form

All rules must be of the form

A → a

or

A → B · C

AFL 06, King’s College London, 30. October 2013 – p. 28/30

CYK Algorithm

S → N · P
P → V · N
N → N · N
N → students | Jeff | geometry | trains
V → trains

Jeff trains geometry students

AFL 06, King’s College London, 30. October 2013 – p. 29/30

CYK Algorithm

runtime is O(n3)

grammars need to be transferred into CNF

AFL 06, King’s College London, 30. October 2013 – p. 30/30

