
CSCI 742 - Compiler Construction

Lecture 21
Introduction to Type Checking

Instructor: Hossein Hojjat

March 19, 2018

Compiler Phases

Source Code
(concrete syntax) i f (=x 0) 1;

Lexical Analysis

if (==Token Stream

Syntax Analysis
(Parsing)IF

Semantic Analysis

Attributed AST

Error

= x =x +

0x) x = x + 1 ;

(Name Analysis,
Type Analysis, ...)

Abstract Syntex Tree

Code Generation

(AST) x 0 x +
===

x 1

IF

x 0 x +
===

x 1

boolean

int
int

int int

int
int

16: iload_2
17: ifne 24
20: iload_2
21: iconst_1
22: iadd
23: istore_2
24: ...

Machine Code

1

Compiler Phases

• Type theory covers a huge range of topics

• Several lectures in the courses
- Programming Language Concepts (344)
- Programming Language Theory (740)

• In this course we do not cover the theoretical aspects of
type system design

• We are mostly interested in type checking as a major component
of the semantic analysis phase

2

What is a type?

• Type: a set of values and a set of operations on those values

• Example: Integers

• int x,y; means:
- x,y ∈ [−231, 231)
- Operations + - < <= mod ... are possible on x and y

• Type errors:
improper, type-inconsistent operations during program execution

• Type safety: absence of type errors at run time

3

How to Ensure Type-Safety?

Bind (assign) types, then check types

Type binding

• Defines types for constructs in the program
(e.g., variables, functions)

• Can be either explicit (boolean x) or implicit (x = false)

• Type safety: correctness with respect to the type bindings

Type checking

• Static semantic checks to enforce the type safety of the program

• Enforce a set of type-checking rules

4

Type Check Examples

• Operators (such as +) receive the right types of operands

• User-defined functions receive the right types of operands

• LHS of an assignment should be “assignable”

• Variables are assigned the expected kinds of values

• Return statement must agree with return type

• Class members accessed appropriately

5

Static vs. Dynamic Typing

• Statically typed language: types are defined and checked at
compile-time,
and do not change during the execution of the program

• E.g., C, Java, Pascal

• Dynamically typed language: types defined and checked at
run-time, during program execution

• E.g., Lisp, Scheme, Smalltalk

6

Why Static Checking?

• Efficient code: dynamic checks slow down the program

• Guarantees that all executions will be safe

• With dynamic checking, you never know when the next execution of
the program will fail due to a type error

Drawbacks

• Adds an annotation burden for programmers

• Static type safety is a conservative approximation of the values that
may occur during all possible executions

• It may reject some type-safe programs unfairly

7

Suitable Formalism

• We have used the following formal notations for specifying the first
two phases of compiler:

- Regular expressions for lexical analysis
- Context-free grammars for parsers

• We use inference systems from logic to formalize type checking
- Similar to what we did in name analysis

• Inference systems are suitable for performing computations of form:

If the first expression is of type T and
the second expression is of type T ′ then
the third expression must be of type T ′′

8

Background: Inference Systems

• Example inference rule:

All great universities have smart students Premise 1
RIT is a great university Premise 2
RIT has smart students Conclusion

• Example inference rule:

e1 has type int Premise 1
e2 has type int Premise 2
e1 + e2 has type int Conclusion

9

Background: Inference Systems

• An inference system has two parts:
1. Definition of Judgments

• Judgment: statement asserting a certain fact for an object

2. Finite set of Inference Rules

• An inference rule has:
1. a finite number of judgments P1, P2, · · · , Pn as premises;
2. a single judgment C as conclusion

• If a rule has no premises, it is called an axiom

P1 P2 · · · Pn

C
(Rule name)

Premises above the line (0 or more)
Conclusion below the line

10

Background: Inference Systems

Example: Use an inference system to define the set of even numbers

• Judgment: Even(n) asserts that n is an even number

• Inference rules:

- Axiom:

Even(0)
(Even0)

- Successor Rule:
Even(n)

Even(n + 2)
(EvenS)

11

Derivation Tree

Even(0)
(Even0)

Even(n)

Even(n + 2)
(EvenS)

• To derive more judgments we create trees of inference rules

Even(0)
(Even0)

Even(2)
(EvenS)

Even(4)
(EvenS)

Even(6)
(EvenS)

• Does Even(1) hold?

• No, because there exists no possible derivation

12

Derivation Tree

Even(0)
(Even0)

Even(n)

Even(n + 2)
(EvenS)

• To derive more judgments we create trees of inference rules

Even(0)
(Even0)

Even(2)
(EvenS)

Even(4)
(EvenS)

Even(6)
(EvenS)

• Does Even(1) hold?

• No, because there exists no possible derivation

12

Derivation Tree

Judgment

JudgmentJudgment

JudgmentJudgmentJudgment

Judgment

Axioms

Rules

13

Example: Less-than

Example: Use an inference system to define the less-than relation

• Judgment: n < m asserts that n is smaller than m

• Inference rules:

- Axiom:

n < n + 1
(Suc)

- Transitivity Rule:
k < n n < m

k < m
(Trans)

Exercise: Prove 0 < 3.

14

Type Judgments and Type Rules

• e type checks to T under Γ (type environment)

Γ ` e : T

- Types of constants are predefined

- Type binding: types of variables are specified in the source code

• If e is composed of sub-expressions

Γ ` e1 : T1 · · · Γ ` en : Tn

Γ ` e : T

15

Type Judgments and Type Rules

Γ ` e : T

If the (free) variables of e have types given by the type environment
gamma, then e (correctly) type checks and has type T

Γ ` e1 : T1 · · · Γ ` en : Tn

Γ ` e : T

If e1 type checks in Γ and has type T1

and ...
and en type checks in Γ and has type Tn

then e type checks in Γ and has type T

16

Type Rules with Environment

x y

<

?

+

y 1

x
int x;

int y;

(x<y) ? x : (y + 1)

Type Environment Γ

int

int int

intint

boolean

int int

Type Rules:

(x : T) ∈ Γ

Γ ` x : T IntConst(k) : int

Γ ` e1 : int Γ ` e2 : int

Γ ` (e1 < e2) : boolean

Γ ` e1 : int Γ ` e2 : int

Γ ` (e1 + e2) : int

Γ ` b : boolean Γ ` e1 : T Γ ` e2 : T

Γ ` (b ? e1 : e2) : T 17

