

CSCI 742 - Compiler Construction

Lecture 3 Introduction to Regular Expressions Instructor: Hossein Hojjat

January 22, 2018

Compiler Phases

- Goal: Partition input string into meaningful elements called tokens
- Token is a syntactic category:
 - In English: verbs, nouns, pronouns, adverbs, adjectives , \ldots
 - In programming language: identifier, integer, keyword, semicolon, ...

Input:

					-																			-																									
	Ξ.				т.		- 1																- 4					•					-	-							-		- 1			1		-	
					г		_					x.		 	=																		- 3	<u>ر</u>			_	_					-	-			 	-	
					•			<u>۱</u>				~			_					-				•										•			_	_		 	•		- 1		 	-	 	,	
								۰.																				/																			 		
• •	• •	• •	• • •	• • •	• • •	 	• •	• • •	• •	• • •	• • •	• •	• •	 • • •	 	• •	•••	• • •	• • •	• •	• • •	• •		• • •	• • •	• • •	• •	• • •	• •	• •	• • •	 	• •	• • •	• • • •	••••	• •		• •	 	• • •	 • •			 		 		• • •

Output:

IF , LPAREN , ID(x) , EQUALS , INTLIT(0) , RPAREN , ID(x) , EQSIGN , ID(x) , PLUS , INTLIT(1) , SEMICOLON

- A lexical analyzer ("lexer" or "scanner") has the following tasks:
- 1) Recognize substrings corresponding to tokens
- 2) Return tokens with their categories
- There are finitely many token categories
 - Identifier
 - LPAREN
 - RPAREN
 - COLON
 - ... (many, but finitely many)
- There is unbounded number of instances of token classes like Identifier

- Output of lexical analysis is a stream of tokens which is input to parser
- Parser relies on token category
 - For example, it treats identifiers and keywords differently
- We use token categories when writing grammars for parsing
- **Regular languages** can be used to describe valid tokens of almost every programming language

- Alphabet Σ : Finite set of elements
 - For lexer: Characters
 - For parser: Token classes
- Words (strings): Sequence of elements from the alphabet Σ
 - Special case: empty word ϵ
- $\Sigma*$: Set of all words over Σ
- Language over $\Sigma:$ a subset of $\Sigma*$

- $\Sigma = \{a, b\}$
- $\Sigma * = \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, \cdots \}$

Examples of two languages, subsets of Σ *:

- $L_1 = \{a, bb, ab\}$ (finite language, three words)
- $L_2 = \{ab, abab, ababab, \dots\} = \{(ab)^n | n \ge 1\}$ (infinite language)

Operation on Languages

Operation	Definition					
union of L_1 and L_2	$I_{1} \sqcup I_{2} = \int e \left[e \subset I_{2} \right] \langle e \subset I_{2} \rangle$					
written $L_1 \cup L_2$	$L_1 \cup L_2 = \{ s \mid s \in L_1 \lor s \in L_2 \}$					
concatenation of L_1 and L_2	$I = I = \{at \mid a \in I \land t \in I\}$					
written $L_1.L_2$	$L_1.L_2 = \{si \mid s \in L_1 \land i \in L_2\}$					
Kleene closure of L	$I = ^{\infty} I^{i}$					
written $L*$	$L^* = \bigcup_{i=0} L$					
positive closure of L	$I \downarrow - \downarrow \downarrow^{\infty} I^{i}$					
written $L+$	$L+=\bigcup_{i=1}L$					

• L^i is recursively defined

 $L^0 = \{\epsilon\}$ (the language consisting only of the empty string) $L^1 = L$ $L^{i+1} = \{wv : w \in L^i \land v \in L\}$ for each i > 0

- $L = \{a, ab\}$
- $L.L = \{aa, aab, aba, abab\}$
- $L* = \{\epsilon, a, ab, aa, aab, aba, abab, aaa, ...\}$
- $= \{w \mid \text{immediately before each } b \text{ there is } a \}$

- Star allows us to define infinite languages starting from finite ones
- We can use it to describe some of those infinite but reasonable languages

- Star allows us to define infinite languages starting from finite ones
- We can use it to describe some of those infinite but reasonable languages
- When is *L** finite?

- Star allows us to define infinite languages starting from finite ones
- We can use it to describe some of those infinite but reasonable languages
- When is *L** finite?
- Only in these two cases:
- $\emptyset^* = \{\epsilon\}$ (because $\emptyset^0 = \{\epsilon\}$)
- $\bullet \ \{\epsilon\}^* = \{\epsilon\}$

Properties of Words

- Let $w_i \in \Sigma *$ be a word
- Concatenation is associative:

$$(w_1.w_2).w_3 = w_1.(w_2.w_3)$$

• Empty word ϵ is left and right identity:

 $w.\epsilon = w$ $\epsilon.w = w$

- Cancellation property
- If $w_1.w_3 = w_1.w_2$ then $w_3 = w_2$
- If $w_3.w_1 = w_2.w_1$ then $w_3 = w_2$
- There are many other properties, many easily provable from definition of operations

Length of a word

- $\bullet \ |\epsilon|=0$
- $\bullet \ |c| = 1 \qquad \text{if } c \in \Sigma$
- $|w_1.w_2| = |w_1| + |w_2|$ $w_i \in \Sigma *$

Reverse of a word

- $\bullet \ \epsilon^{-1} = \epsilon$
- $c^{-1} = c$ if $c \in \Sigma$
- $(w_1.w_2)^{-1} = w_2^{-1}.w_1^{-1}$

• Concatenation of w and v has these letters:

 $w_{(0)}\cdots w_{(|w|-1)}v_{(0)}\cdots v_{(|v|-1)}$

• Thus, for every i where $0 \leq i \leq |w| + |v| - 1$

$$\begin{aligned} & (wv)_{(i)} = w_{(i)}, & & \text{if } i < |w| \\ & (wv)_{(i)} = v_{(i-|w|)}, & & \text{if } i \ge |w| \end{aligned}$$

Regular Expressions

- Notations to describe regular languages
 - Regular expressions (RE)
 - Regular grammars
- Regular expression over alphabet Σ :
 - 1. ϵ is a RE denoting the set $\{\epsilon\}$
 - 2. If $a \in \Sigma$, then a is a RE denoting $\{a\}$
 - 3. if r and s are REs, denoting L(r) and L(s), then:
 - $r \mid s \;$ is a RE denoting $L(r) \cup L(s)$
 - $r \, . \, s$ is a RE denoting L(r).L(s)
 - r* is a RE denoting L(r)*
- Precedence: Closure then Concatenation then Alternation

• Regular expressions are just a notation for some particular operations on languages

```
letter (letter | digit)*
```

• Denotes the set

letter (letter \cup digit)*

• Any finite language $\{w_1, \cdots, w_n\}$ can be described using regular expression

$$w_1 \mid \cdots \mid w_n$$

Some RE operators can be defined in terms of previous ones

- $[a..z] = a|b|\cdots|z$ (use ASCII ordering)
- e? (optional expression) = $e \mid \epsilon$
- *e*+ (repeat at least once)
- $!e \text{ (complement)} = \Sigma * \backslash e$
- $e_1 \& e_2$ (intersection) = $!(!e_1 | !e_2)$

Find a regular expression that generates all alternating sequences of 0 and 1 with arbitrary length (including lengths zero, one, two, ...).

For example, the alternating sequences of length one are 0 and 1, length two are 01 and 10, length three are 010 and 101. Note that no two adjacent character can be the same in an alternating sequence.