
Coursework 3
This coursework is worth 5% and is due on 22 November at 18:00. You are
asked to implement a parser for the WHILE language and also an interpreter.
You can do the implementation in any programming language you like, but
you need to submit the source code with which you answered the questions,
otherwise a mark of 0% will be awarded. You should use the lexer from the
previous coursework for the parser.

Disclaimer
It should be understood that the work you submit represents your own effort.
You have not copied from anyone else. An exception is the Scala code I showed
during the lectures, which you can use. You can also use your own code from
the CW 1 and CW 2.

Question 1
Design a grammar for the WHILE language and give the grammar rules. The
main categories of non‑terminals should be:

• arithmetic expressions (with the operations from the previous course‑
work, that is +, -, *, / and %)

• boolean expressions (with the operations ==, <, >, !=, &&, ||, true and
false)

• single statements (that is skip, assignments, ifs, while‑loops, read and
write)

• compound statements separated by semicolons

• blocks which are enclosed in curly parentheses

Question 2
You should implement a parser for the WHILE language using parser com‑
binators. Be careful that the parser takes as input a stream, or list, of tokens
generated by the tokenizer from the previous coursework. For this you might
want to filter out whitespaces and comments. Your parser should be able to
handle the WHILE programs in Figures 2 and 3. In addition give the parse tree
for the statement:

if (a < b) then skip else a := a * b + 1

A (possibly incomplete) datatype for parse trees in Scala would look as in Fig‑
ure 1.

1



abstract class Stmt
abstract class AExp
abstract class BExp

type Block = List[Stmt]

case object Skip extends Stmt
case class If(a: BExp, bl1: Block, bl2: Block) extends Stmt
case class While(b: BExp, bl: Block) extends Stmt
case class Assign(s: String, a: AExp) extends Stmt

case class Var(s: String) extends AExp
case class Num(i: Int) extends AExp
case class Aop(o: String, a1: AExp, a2: AExp) extends AExp

case object True extends BExp
case object False extends BExp
case class Bop(o: String, a1: AExp, a2: AExp) extends BExp
case class Lop(o: String, b1: BExp, b2: BExp) extends BExp

Figure 1: The datatype for parse trees in Scala.

Question 3
Implement an interpreter for theWHILE language you designed and parsed in
Question 1 and 2. This interpreter should take as input a parse tree. However
be careful because, programs contain variables and variable assignments. This
means you need to maintain a kind of memory, or environment, where you
can look up a value of a variable and also store a new value if it is assigned.
Therefore an evaluation function (interpreter) needs to look roughly as follows

eval_stmt(stmt, env)

where stmt corresponds to the parse tree of the program and env is an environ‑
ment acting as a store for variable values. Consider the Fibonacci program in
Figure 2. At the beginning of the program this store will be empty, but needs
to be extended in line 3 and 4 where the variables minus1 and minus2 are as‑
signed values. These values need to be reassigned in lines 7 and 8. The pro‑
gram should be interpreted according to straightforward rules: for example an
if‑statement will “run” the if‑branch if the boolean evaluates to true, otherwise
the else‑branch. Loops should be run as long as the boolean is true.

Give some time measurements for your interpreter and the loop program
in Figure 3. For example how long does your interpreter take when start is
initialised with 100, 500 and so on. How far can you scale this value if you are
willing to wait, say 1 Minute?

2



write "Fib";
read n;
minus1 := 0;
minus2 := 1;
while n > 0 do {

temp := minus2;
minus2 := minus1 + minus2;
minus1 := temp;
n := n - 1

};
write "Result";
write minus2

Figure 2: Fibonacci program in the WHILE language.

start := 1000;
x := start;
y := start;
z := start;
while 0 < x do {

while 0 < y do {
while 0 < z do { z := z - 1 };
z := start;
y := y - 1

};
y := start;
x := x - 1

}

Figure 3: The three‑nested‑loops program in the WHILE language. Usually
used for timing measurements.

3


