
CSCI 742 - Compiler Construction

Lecture 16
SLR, LR(1) and LALR

Instructor: Hossein Hojjat

February 21, 2018

LR(0) Automaton Example

• Consider the grammar S → (S) | num

S′ → •S$
S → •(S)
S → •num

S → (•S)
S → •(S)
S → •num

(

(

S′ → S • $

0 2

1

S

S → num•

3num
num

S → (S•)

4S
S → (S)•
5)

1

Creating Parse Tables

For each state:

• Transition to another state using a terminal symbol is a shift to that state

• Transition to another state using a non-terminal is a goto to that state

• If there is a single item A→ α• in the state reduce with that production for
all terminals

2

Building Parse Table Example

() num $ S

0 s2 s3 g1

1 accept
2 s2 s3 g4

3 r(S→num) r(S→num) r(S→num) r(S→num)

4 s5

5 r(S→(S)) r(S→(S)) r(S→(S)) r(S→(S))

S′ → •S$
S → •(S)
S → •num

S → (•S)
S → •(S)
S → •num

(

(

S′ → S • $

0 2

1

S

S → num•

3num
num

S → (S•)

4S
S → (S)•
5)

3

LR(0) Limitations

• LR(0) only works if states with reduce actions have a single reduce
action

E → T •

• In those states it always reduce without looking at lookahead

• LR(0) is vulnerable to unnecessary conflicts

• Shift/Reduce Conflicts (may reduce too soon in some cases)

E → E •+T

S → E•

• Reduce/Reduce Conflicts

E → num•

T → num•

4

LR(0) Parsing Table With Conflicts
() + num $ S E

0 s3 s4 g2 g1

1 r1 r1 r1/s6 r1 r1

2 accept
3 s3 s4 g5

4 r4 r4 r4 r4 r4

5 s8 s6

6 s7

7 r2 r2 r2 r2 r2

8 r3 r3 r3 r3 r3

r1 S → E

r2 S → E + num

r3 E → (E)

r4 E → num

S′ → •S$
S → •E

E → •E + num

S′ → S • $

0

3

2

S

num
num

(

E → •(E)
E → •num (E → •E + num

E → •(E)
E → •num

E → (•E)

1
E → E •+num

S → E•

E

5
E → E •+num

E → (E•)

4
E → num•

E

8
E → (E)•

)

6
E → E + •num

+

+

7
E → E + num•

num

5

SLR Parsing

• Simple LR parsing (SLR) is a simple extension of LR(0) parsing

• For each reduction A→ γ• look at the lookahead symbol c

• Apply reduction only if c is in FOLLOW(A)

SLR Parsing Table

• Eliminates some conflicts

• Same as LR(0) table except reduction rows

• Reductions do not fill entire rows

• Add reductions A→ γ• only in the columns of symbols in
FOLLOW(A)

6

LR(0) Parsing Table
() + num $ S E

0 s3 s4 g2 g1

1 r1 r1 r1/s6 r1 r1

2 accept
3 s3 s4 g5

4 r4 r4 r4 r4 r4

5 s8 s6

6 s7

7 r2 r2 r2 r2 r2

8 r3 r3 r3 r3 r3

FOLLOW(S) = $

FOLLOW(E) = {+,), $}

r1 S → E

r2 E → E + num

r3 E → (E)

r4 E → num

S′ → •S$
S → •E

E → •E + num

S′ → S • $

0

3

2

S

num
num

(

E → •(E)
E → •num (E → •E + num

E → •(E)
E → •num

E → (•E)

1
E → E •+num

S → E•

E

5
E → E •+num

E → (E•)

4
E → num•

E

8
E → (E)•

)

6
E → E + •num

+

+

7
E → E + num•

num

7

SLR Parsing Table
() + num $ S E

0 s3 s4 g2 g1

1 s6 r1

2 accept
3 s3 s4 g5

4 r4 r4 r4

5 s8 s6

6 s7

7 r2 r2 r2

8 r3 r3 r3

FOLLOW(S) = $

FOLLOW(E) = {+,), $}

r1 S → E

r2 E → E + num

r3 E → (E)

r4 E → num

S′ → •S$
S → •E

E → •E + num

S′ → S • $

0

3

2

S

num
num

(

E → •(E)
E → •num (E → •E + num

E → •(E)
E → •num

E → (•E)

1
E → E •+num

S → E•

E

5
E → E •+num

E → (E•)

4
E → num•

E

8
E → (E)•

)

6
E → E + •num

+

+

7
E → E + num•

num

7

LR(1) Parsing

• Idea: Get as much as possible out of 1 lookahead symbol parsing
table

• LR(1) grammar = recognizable by a shift/reduce parser with 1
lookahead

• LR(1) parsing uses similar concepts as LR(0)

• Parser states = set of LR(1) items

• LR(1) item = LR(0) item + lookahead symbols possibly following
production

• LR(0) item: S → •S + E

• LR(1) item: S → •S + E , +

• Lookahead only has impact on reduce operations:
apply when lookahead = next input

8

LR(1) States

• LR(1) state = set of LR(1) items

• LR(1) item = (X → α • β, y)

• Meaning: α already matched at top of the stack,
next expect to see βy

• Shorthand notation: (X → α • β, {x1, · · · , xn}) means:
- (X → α • β, x1)

- · · ·
- (X → α • β, xn)

• Need to extend closure and goto operations

9

LR(1) Closure

Similar to LR(0) closure, but also keeps track of lookahead symbol

If L is a set of items, CLOSURE(L) is the set of items such that:

• every item in L is in CLOSURE(L)

• if item (X → α • Y β, z) is in CLOSURE(L) and
Y → γ is a production then
(Y → •γ,FIRST(βz))
is also in CLOSURE(L)

10

LR(1) Start State

Initial state: start with (S′ → •S, $), then apply closure operation

Goto is analogous to goto in LR(0) parsing

Goto(L, X)
I = ∅
for any item [A→ α •Xβ, x] in L
I = I ∪ {[A→ αX • β, x]}

return CLOSURE(I)

11

Exercise

Construct the LR(1) automaton for the following grammar:

S′ → S$

S → E + S | E
E → num

12

LR(0) Automaton Example
+ × num $ S R L

0 s5 s4 g3 g2 g1

1 r5 r5/s8 r5 r5

2 r2 r2 r2 r2

3 accept
4 r3 r3 r3 r3

5 s5 s4 g7 g6

6 r5 r5 r5 r5

7 r4 r4 r4 r4

8 s5 s4 g9 g6

9 r1 r1 r1 r1

FOLLOW(S) = $

FOLLOW(L) =

FOLLOW(R) = {×, $}

r1 S → L×R
r2 S → R

r3 L→ num

r4 L→ +R

r5 R→ L

S′ → •S$
S → •L×R
S → •R

S′ → S • $

0

1

2

num

num

S

L→ •num

L→ •+R
R→ •L S → R•

3

L R→ L•

S → L • ×R

R

8
S → L× •R×

L→ •num

L→ •+R

R→ •L

+

5
L→ + •R

L→ •num

L→ •+R

R→ •L

+

L→ num•

4
num

L→ +R•

7

R→ L•
6L

L

R

R→ L×R•

9
R

+

13

SLR Automaton Example
+ × num $ S R L

0 s5 s4 g3 g2 g1

1 r5/s8 r5

2 r2

3 accept
4 r3 r3

5 s5 s4 g7 g6

6 r5 r5

7 r4 r4

8 s5 s4 g9 g6

9 r1

FOLLOW(S) = $

FOLLOW(L) =

FOLLOW(R) = {×, $}

r1 S → L×R
r2 S → R

r3 L→ num

r4 L→ +R

r5 R→ L

S′ → •S$
S → •L×R
S → •R

S′ → S • $

0

1

2

num

num

S

L→ •num

L→ •+R
R→ •L S → R•

3

L R→ L•

S → L • ×R

R

8
S → L× •R×

L→ •num

L→ •+R

R→ •L

+

5
L→ + •R

L→ •num

L→ •+R

R→ •L

+

L→ num•

4
num

L→ +R•

7

R→ L•
6L

L

R

R→ L×R•

9
R

+

13

LR(1) Automaton Example

Grammar is not LR(0) and SLR, but it is LR(1)

S′ → •S$, $
S → •L×R, $
S → •R, $

+

L→ •num,×
L→ •+R,×
R→ •L, $

S

+

S′ → S•, $

L→ •num, $
L→ •+R, $

L→ •num, $

L→ + •R, $

R→ •L, $

L→ •num,×
L→ •+R, $

L→ + •R,×

R→ •L,×

L→ •+R,×

R
S → R•, $

S → L • ×R, $L
R→ L•, $

R→ L•,×
R→ L•, $L

L→ +R•, $
L→ +R•,×

R

L→ num•, $num
L→ num•,×

num

R→ •L, $
L→ •num, $
L→ •+R, $

S → L× •R, $×

S → L×R•, $

R

R→ •L, $
L→ •num, $
L→ •+R, $

L→ + •R, $
+

+

L→ num•, $

num

num
L→ +R•, $

R

R→ L•, $
L

L
state i

There is no more shift/reduce conflict in the automaton:
+ × num $ S R L

state i s8 r(R→ L) 14

r1 S → L×R

r2 S → R

r3 L→ num

r4 L→ +R

r5 R→ L

LALR

• Drawback: LR(1) parse engine has a large number of states

• LALR (Look-Ahead LR parser): Simple technique to eliminate states

• If two LR(1) states are identical except for the look ahead symbol of
their items, merge them

• Result is LALR(1) DFA

• It is more memory efficient, typically merges several LR(1) states

• May also have more reduce/reduce conflicts

• Power of LALR parsing is enough for many mainstream computer
languages

• Several automatic parser generators such as Yacc or GNU Bison

15

LALR States

• Consider for example these two LR(1) states

X → α•, a

Y → β•, c

X → α•, b

Y → β•, d

• They will be merged into the following LALR(1) states

X → α•, {a, b}
Y → β•, {c, d}

16

Hierarchy of Grammar Classes

“Modern Compiler Implementation in Java”,
Andrew W. Appel, Jens Palsberg

17

