
Handout 6
While regular expressions are very useful for lexing and for recognising many
patterns (like email addresses), they have their limitations. For example there
is no regular expression that can recognise the language anbn. Another example
is the language of well-parenthesised expressions. In languages like Lisp, which
use parentheses rather extensively, it might be of interest whether the following
two expressions are well-parenthesised (the left one is, the right one is not):

(((()()))()) (((()()))()))

In order to solve such recognition problems, we need more powerful tech-
niques than regular expressions. We will in particular look at context-free lan-
guages. They include the regular languages as the picture below shows:

...

all languages

.

.
decidable languages

.

.context sensitive languages

.

.
context-free languages

.

.

regular languages

Context-free languages play an important role in ‘day-to-day’ text processing
and in programming languages. Context-free languages are usually specified by
grammars. For example a grammar for well-parenthesised expressions is

P → (·P ·) · P | ϵ

In general grammars consist of finitely many rules built up from terminal sym-
bols (usually lower-case letters) and non-terminal symbols (upper-case letters).
Rules have the shape

NT → rhs

where on the left-hand side is a single non-terminal and on the right a string
consisting of both terminals and non-terminals including the ϵ-symbol for indi-
cating the empty string. We use the convention to separate components on the
right hand-side by using the · symbol, as in the grammar for well-parenthesised
expressions. We also use the convention to use | as a shorthand notation for
several rules. For example

NT → rhs1 | rhs2

means that the non-terminal NT can be replaced by either rhs1 or rhs2. If
there are more than one non-terminal on the left-hand side of the rules, then
we need to indicate what is the starting symbol of the grammar. For example
the grammar for arithmetic expressions can be given as follows

1

E → N
E → E ·+ · E
E → E · − · E
E → E · ∗ · E
E → (·E·)
N → N ·N | 0 | 1 | . . . | 9

where E is the starting symbol. A derivation for a grammar starts with the
staring symbol of the grammar and in each step replaces one non-terminal by a
right-hand side of a rule. A derivation ends with a string in which only terminal
symbols are left. For example a derivation for the string (1+2)+3 is as follows:

E → E + E
→ (E) + E
→ (E + E) + E
→ (E + E) +N
→ (E + E) + 3
→ (N + E) + 3
→+ (1 + 2) + 3

The language of a context-free grammar G with start symbol S is defined as the
set of strings derivable by a derivation, that is

{c1 . . . cn | S →∗ c1 . . . cn with all ci being non-terminals}

A parse-tree encodes how a string is derived with the starting symbol on top and
each non-terminal containing a subtree for how it is replaced in a derivation.
The parse tree for the string (1 + 23) + 4 is as follows:

..E.

E

.

(

.

E

.

E

.

N

.

1

.

+

.

E

.

N

.

2

.

N

.

3

.

)

.

+

.

E

.

N

.

4

We are often interested in these parse-trees since they encode the structure
of how a string is derived by a grammar. Before we come to the problem of
constructing such parse-trees, we need to consider the following two properties
of grammars. A grammar is left-recursive if there is a derivation starting from
a non-terminal, say NT which leads to a string which again starts with NT .
This means a derivation of the form.

2

NT → . . . → NT · . . .

It can be easily seems that the grammar above for arithmetic expressions is
left-recursive: for example the rules E → E · + · E and N → N ·N show that
this grammar is left-recursive. Some algorithms cannot cope with left-recursive
grammars. Fortunately every left-recursive grammar can be transformed into
one that is not left-recursive, although this transformation might make the gram-
mar less human-readable. For example if we want to give a non-left-recursive
grammar for numbers we might specify

N → 0 | . . . | 9 | 1 ·N | 2 ·N | . . . | 9 ·N

Using this grammar we can still derive every number string, but we will never
be able to derive a string of the form . . . → N ·

The other property we have to watch out is when a grammar is ambiguous.
A grammar is said to be ambiguous if there are two parse-trees for one string.
Again the grammar for arithmetic expressions shown above is ambiguous. While
the shown parse tree for the string (1 + 23) + 4 is unique, there are two parse
trees for the string 1 + 2 + 3, namely

..E.

E

.

N

.

1

.

+

.

E

.

E

.

N

.

2

.

+

.

E

.

N

.

3

..E.

E

.

E

.

N

.

1

.

+

.

E

.

N

.

2

.

+

.

E

.

N

.

3

In particular in programming languages we will try to avoid ambiguous gram-
mars because two different parse-trees for a string mean a program can be
interpreted in two different ways. In such cases we have to somehow make sure
the two different ways do not matter, or disambiguate the grammar in some way
(for example making the + left-associative). Unfortunately already the problem
of deciding whether a grammar is ambiguous or not is in general undecidable.

Let us now turn to the problem of generating a parse-tree for a grammar and
string. In what follows we explain parser combinators, because they are easy
to implement and closely resemble grammar rules. Imagine that a grammar
describes the strings of natural numbers, such as the grammar N shown above.
For all such strings we want to generate the parse-trees or later on we actu-
ally want to extract the meaning of these strings, that is the concrete integers
“behind” these strings. The parser combinators will be functions of type

I ⇒ Set[(T, I)]

that is they take as input something of type I, typically a list of tokens or a
string, and return a set of pairs. The first component of these pairs corresponds

3

to what the parser combinator was able to process from the input and the
second is the unprocessed part of the input. As we shall see shortly, a parser
combinator might return more than one such pair, with the idea that there are
potentially several ways how to interpret the input.

The abstract class for parser combinators requires the implementation of
the function parse taking an argument of type I and returns a set of type
Set[(T, I)].

abstract class Parser[I, T] {
def parse(ts: I): Set[(T, I)]

def parse_all(ts: I): Set[T] =
for ((head, tail) <- parse(ts); if (tail.isEmpty))

yield head
}

One of the simplest parser combinators recognises just a character, say c, from
the beginning of strings. Its behaviour is as follows:

• if the head of the input string starts with a c, it returns the set {(c, tail of s)}

• otherwise it returns the empty set ∅

The input type of this simple parser combinator for characters is String and
the output type Set[(Char, String)]. The code in Scala is as follows:

case class CharParser(c: Char) extends Parser[String, Char] {
def parse(sb: String) =

if (sb.head == c) Set((c, sb.tail)) else Set()
}

4

