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Static Single-Assignment

(1+ a) + (3+ (b ∗ 5))

1 let tmp0 = add 1 a in
2 let tmp1 = mul b 5 in
3 let tmp2 = add 3 tmp1 in
4 let tmp3 = add tmp0 tmp2
5 in tmp3
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1 define i32 @fact (i32 %n) {
2 %tmp_20 = icmp eq i32 %n, 0
3 br i1 %tmp_20, label %if_branch_24, label %else_branch_25
4 if_branch_24:
5 ret i32 1
6 else_branch_25:
7 %tmp_22 = sub i32 %n, 1
8 %tmp_23 = call i32 @fact (i32 %tmp_22)
9 %tmp_21 = mul i32 %n, %tmp_23
10 ret i32 %tmp_21
11 }

def fact(n) = if n == 0 then 1 else n * fact(n ‐ 1)
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LLVMTypes
boolean i1
byte i8
short i16
char i16
integer i32
long i64
float float
double double
*_ pointer to
**_ pointer to a pointer to
[_] arrays of
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br i1 %var, label %if_br, label %else_br

icmp eq i32 %x, %y ; for equal
icmp sle i32 %x, %y ; signed less or equal
icmp slt i32 %x, %y ; signed less than
icmp ult i32 %x, %y ; unsigned less than

%var = call i32 @foo(...args...)
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Abstract Syntax Trees

// Fun language (expressions)
abstract class Exp
abstract class BExp

case class Call(name: String, args: List[Exp]) extends Exp
case class If(a: BExp, e1: Exp, e2: Exp) extends Exp
case class Write(e: Exp) extends Exp
case class Var(s: String) extends Exp
case class Num(i: Int) extends Exp
case class Aop(o: String, a1: Exp, a2: Exp) extends Exp
case class Sequence(e1: Exp, e2: Exp) extends Exp
case class Bop(o: String, a1: Exp, a2: Exp) extends BExp
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K-(Intermediate)Language
abstract class KExp
abstract class KVal

// K‐Values
case class KVar(s: String) extends KVal
case class KNum(i: Int) extends KVal
case class Kop(o: String, v1: KVal, v2: KVal) extends KVal
case class KCall(o: String, vrs: List[KVal]) extends KVal
case class KWrite(v: KVal) extends KVal

// K‐Expressions
case class KIf(x1: String, e1: KExp, e2: KExp) extends KExp
case class KLet(x: String, v: KVal, e: KExp) extends KExp
case class KReturn(v: KVal) extends KExp
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KLet
tmp0 = add 1 a
tmp1 = mul b 5
tmp2 = add 3 tmp1
tmp3 = add tmp0 tmp2

KLet tmp0 , add 1 a in
KLet tmp1 , mul b 5 in
KLet tmp2 , add 3 tmp1 in
KLet tmp3 , add tmp0 tmp2 in
...

case class KLet(x: String, e1: KVal, e2: KExp)
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KLet
tmp0 = add 1 a
tmp1 = mul b 5
tmp2 = add 3 tmp1
tmp3 = add tmp0 tmp2

let tmp0 = add 1 a in
let tmp1 = mul b 5 in
let tmp2 = add 3 tmp1 in
let tmp3 = add tmp0 tmp2 in
...

case class KLet(x: String, e1: KVal, e2: KExp)
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CPS-Translation
def CPS(e: Exp)(k: KVal => KExp) : KExp =

e match { ... }

the continuation k can be thought of:

let tmp0 = add 1 a in
let tmp1 = mul □ 5 in
let tmp2 = add 3 tmp1 in
let tmp3 = add tmp0 tmp2 in

KReturn tmp3
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def fact(n: Int) : Int = {
if (n == 0) 1 else n * fact(n ‐ 1)

}

def factC(n: Int, ret: Int => Int) : Int = {
if (n == 0) ret(1)
else factC(n ‐ 1, x => ret(n * x))

}

fact(10)
factC(10, identity)
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def fibC(n: Int, ret: Int => Int) : Int = {
if (n == 0 || n == 1) ret(1) else
fibC(n ‐ 1,

r1 => fibC(n ‐ 2,
r2 => ret(r1 + r2)))

}

fibC(10, identity)
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Are there more strings in
L(a∗) or L((a+ b)∗)?
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Can you remember this HW?

(1) How many basic regular expressions are there to
match the string abcd?
(2) How many if they cannot include 1 and 0?
(3) How many if they are also not allowed to
contain stars?
(4) How many if they are also not allowed to
contain _+ _?
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There are more problems, than
there are programs.

There must be a problem for which
there is no program.
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Subsets

If A ⊆ B then A has fewer or equal
elements than B

A ⊆ B and B ⊆ A

then A = B
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{ , , , , }

{ , , }

5 elements

3 elements
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Newton vs Feynman

classical physics quantum physics
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TheGoal of the Talk

show you that something very unintuitive
happens with very large sets

convince you that there are more
problems than programs
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B= { , , , , }

A= { , , }

|A|= 5, |B|= 3
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B= { , , , , }

A= { , , }

then |A| ≤ |B|
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B= { , , , , }

A= { , , }

for= has to be a one-to-onemapping
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Cardinality

|A| def

= “how many elements”

A ⊆ B ⇒ |A| ≤ |B|

if there is an injective function
f : A → B then |A| ≤ |B|

∀xy. f(x) = f(y) ⇒ x = y

CFL 10, King’s College London – p. 23/37



Cardinality

|A| def

= “how many elements”

A ⊆ B ⇒ |A| ≤ |B|

if there is an injective function
f : A → B then |A| ≤ |B|

∀xy. f(x) = f(y) ⇒ x = y

CFL 10, King’s College London – p. 23/37



A= { , , }

B= { , , }

then |A|= |B|
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Natural Numbers

N
def

= {0, 1, 2, 3, .......}

A is countable iff |A| ≤ |N|
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First Question

|N − {0}| ? |N|

≥ or≤ or= ?

x 7→ x+ 1,
|N − {0}|= |N|

CFL 10, King’s College London – p. 26/37



First Question

|N − {0}| ? |N|

≥ or≤ or= ?

x 7→ x+ 1,
|N − {0}|= |N|

CFL 10, King’s College London – p. 26/37



|N − {0, 1}| ? |N|

|N − O| ? |N|

O
def
= odd numbers {1, 3, 5......}

E
def
= even numbers {0, 2, 4......}
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|N ∪−N| ? |N|

N
def
= positive numbers {0, 1, 2, 3, ......}

−N
def
= negative numbers {0,−1,−2,−3, ......}
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A is countable if there exists an
injective f : A → N

A is uncountable if there does not
exist an injective f : A → N

countable: |A| ≤ |N|
uncountable: |A| > |N|

Does there exist such an A ?
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Hilbert’s Hotel

…has as many rooms as there are natural numbers
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Real Numbers between
0 and 1

1

2

3

4

3 3 3 3 3 3 . . .

1 2 3 4 5 6 7

0 1 0 1 0 . . .

7 8 5 3 9 . . .

. . .

. . .

|N| < |R|
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The Set of Problems
ℵ0

1

2

3

4

0 1 2 3 4 5 . . .

0 1 0 1 0 1 . . .

0 0 0 1 1 0 0

0 0 0 0 0 . . .

1 1 0 1 1 . . .

. . .

. . .

|Progs|= |N|< |Probs|
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Halting Problem

Assume a program H that decides for all
programs A and all input data Dwhether

H(A,D) def
= 1 iff A(D) terminates

H(A,D) def
= 0 otherwise
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Halting Problem (2)

Given such a program H define the
following program C: for all programs A

C(A) def
= 0 iff H(A,A) = 0

C(A) def
= loops otherwise
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Contradiction

H(C, C) is either 0 or 1.

H(C, C) = 1
defH⇒ C(C) ↓ def C⇒ H(C, C) = 0

H(C, C) = 0
defH⇒ C(C) loops

def C⇒
H(C, C) = 1

Contradiction in both cases. So H cannot exist.
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Take Home Points
there are sets that are more infinite than
others

even with the most powerful computer we
can imagine, there are problems that
cannot be solved by any program

in CS we actually hit quite often such
problems (halting problem)
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