
Compilers and
Formal Languages

Email: christian.urban at kcl.ac.uk
Office Hour: Thurdays 15 – 16
Location: N7.07 (North Wing, Bush House)
Slides & Progs: KEATS
Pollev: https://pollev.com/cfltutoratki576

1 Introduction, Languages 6 While-Language
2 Regular Expressions, Derivatives 7 Compilation, JVM
3 Automata, Regular Languages 8 Compiling Functional Languages
4 Lexing, Tokenising 9 Optimisations
5 Grammars, Parsing 10 LLVM

CFL 10, King’s College London – p. 1/37

LLVM: Overview

LLVM-IR
Optimisations

C++

C

...

Haskell

x86

ARM

MIPS

RISC

Power PC

...

CFL 10, King’s College London – p. 2/37

Static Single-Assignment

(1+ a) + (3+ (b ∗ 5))

1 let tmp0 = add 1 a in
2 let tmp1 = mul b 5 in
3 let tmp2 = add 3 tmp1 in
4 let tmp3 = add tmp0 tmp2
5 in tmp3

CFL 10, King’s College London – p. 3/37

1 define i32 @fact (i32 %n) {
2 %tmp_20 = icmp eq i32 %n, 0
3 br i1 %tmp_20, label %if_branch_24, label %else_branch_25
4 if_branch_24:
5 ret i32 1
6 else_branch_25:
7 %tmp_22 = sub i32 %n, 1
8 %tmp_23 = call i32 @fact (i32 %tmp_22)
9 %tmp_21 = mul i32 %n, %tmp_23
10 ret i32 %tmp_21
11 }

def fact(n) = if n == 0 then 1 else n * fact(n ‐ 1)

CFL 10, King’s College London – p. 4/37

LLVMTypes
boolean i1
byte i8
short i16
char i16
integer i32
long i64
float float
double double
*_ pointer to
**_ pointer to a pointer to
[_] arrays of

CFL 10, King’s College London – p. 5/37

br i1 %var, label %if_br, label %else_br

icmp eq i32 %x, %y ; for equal
icmp sle i32 %x, %y ; signed less or equal
icmp slt i32 %x, %y ; signed less than
icmp ult i32 %x, %y ; unsigned less than

%var = call i32 @foo(...args...)

CFL 10, King’s College London – p. 6/37

Abstract Syntax Trees

// Fun language (expressions)
abstract class Exp
abstract class BExp

case class Call(name: String, args: List[Exp]) extends Exp
case class If(a: BExp, e1: Exp, e2: Exp) extends Exp
case class Write(e: Exp) extends Exp
case class Var(s: String) extends Exp
case class Num(i: Int) extends Exp
case class Aop(o: String, a1: Exp, a2: Exp) extends Exp
case class Sequence(e1: Exp, e2: Exp) extends Exp
case class Bop(o: String, a1: Exp, a2: Exp) extends BExp

CFL 10, King’s College London – p. 7/37

K-(Intermediate)Language
abstract class KExp
abstract class KVal

// K‐Values
case class KVar(s: String) extends KVal
case class KNum(i: Int) extends KVal
case class Kop(o: String, v1: KVal, v2: KVal) extends KVal
case class KCall(o: String, vrs: List[KVal]) extends KVal
case class KWrite(v: KVal) extends KVal

// K‐Expressions
case class KIf(x1: String, e1: KExp, e2: KExp) extends KExp
case class KLet(x: String, v: KVal, e: KExp) extends KExp
case class KReturn(v: KVal) extends KExp

CFL 10, King’s College London – p. 8/37

KLet
tmp0 = add 1 a
tmp1 = mul b 5
tmp2 = add 3 tmp1
tmp3 = add tmp0 tmp2

KLet tmp0 , add 1 a in
KLet tmp1 , mul b 5 in
KLet tmp2 , add 3 tmp1 in
KLet tmp3 , add tmp0 tmp2 in
...

case class KLet(x: String, e1: KVal, e2: KExp)

CFL 10, King’s College London – p. 9/37

KLet
tmp0 = add 1 a
tmp1 = mul b 5
tmp2 = add 3 tmp1
tmp3 = add tmp0 tmp2

let tmp0 = add 1 a in
let tmp1 = mul b 5 in
let tmp2 = add 3 tmp1 in
let tmp3 = add tmp0 tmp2 in
...

case class KLet(x: String, e1: KVal, e2: KExp)

CFL 10, King’s College London – p. 10/37

CPS-Translation
def CPS(e: Exp)(k: KVal => KExp) : KExp =

e match { ... }

the continuation k can be thought of:

let tmp0 = add 1 a in
let tmp1 = mul □ 5 in
let tmp2 = add 3 tmp1 in
let tmp3 = add tmp0 tmp2 in

KReturn tmp3

CFL 10, King’s College London – p. 11/37

def fact(n: Int) : Int = {
if (n == 0) 1 else n * fact(n ‐ 1)

}

def factC(n: Int, ret: Int => Int) : Int = {
if (n == 0) ret(1)
else factC(n ‐ 1, x => ret(n * x))

}

fact(10)
factC(10, identity)

CFL 10, King’s College London – p. 12/37

def fibC(n: Int, ret: Int => Int) : Int = {
if (n == 0 || n == 1) ret(1) else
fibC(n ‐ 1,

r1 => fibC(n ‐ 2,
r2 => ret(r1 + r2)))

}

fibC(10, identity)

CFL 10, King’s College London – p. 13/37

CFL 10, King’s College London – p. 14/37

CFL 10, King’s College London – p. 14/37

CFL 10, King’s College London – p. 14/37

CFL 10, King’s College London – p. 14/37

CFL 10, King’s College London – p. 14/37

CFL 10, King’s College London – p. 14/37

CFL 10, King’s College London – p. 14/37

CFL 10, King’s College London – p. 14/37

CFL 10, King’s College London – p. 14/37

CFL 10, King’s College London – p. 14/37

CFL 10, King’s College London – p. 14/37

CFL 10, King’s College London – p. 14/37

CFL 10, King’s College London – p. 14/37

CFL 10, King’s College London – p. 14/37

CFL 10, King’s College London – p. 14/37

Are there more strings in
L(a∗) or L((a+ b)∗)?

CFL 10, King’s College London – p. 15/37

Can you remember this HW?

(1) How many basic regular expressions are there to
match the string abcd?
(2) How many if they cannot include 1 and 0?
(3) How many if they are also not allowed to
contain stars?
(4) How many if they are also not allowed to
contain _+ _?

CFL 10, King’s College London – p. 16/37

There are more problems, than
there are programs.

There must be a problem for which
there is no program.

CFL 10, King’s College London – p. 17/37

There are more problems, than
there are programs.

There must be a problem for which
there is no program.

CFL 10, King’s College London – p. 17/37

Subsets

If A ⊆ B then A has fewer or equal
elements than B

A ⊆ B and B ⊆ A

then A = B

CFL 10, King’s College London – p. 18/37

{ , , , , }

{ , , }

5 elements

3 elements
CFL 10, King’s College London – p. 19/37

Newton vs Feynman

classical physics quantum physics

CFL 10, King’s College London – p. 20/37

TheGoal of the Talk

show you that something very unintuitive
happens with very large sets

convince you that there are more
problems than programs

CFL 10, King’s College London – p. 21/37

B= { , , , , }

A= { , , }

|A|= 5, |B|= 3
CFL 10, King’s College London – p. 22/37

B= { , , , , }

A= { , , }

then |A| ≤ |B|
CFL 10, King’s College London – p. 22/37

B= { , , , , }

A= { , , }

for= has to be a one-to-onemapping

CFL 10, King’s College London – p. 22/37

Cardinality

|A| def

= “how many elements”

A ⊆ B ⇒ |A| ≤ |B|

if there is an injective function
f : A → B then |A| ≤ |B|

∀xy. f(x) = f(y) ⇒ x = y

CFL 10, King’s College London – p. 23/37

Cardinality

|A| def

= “how many elements”

A ⊆ B ⇒ |A| ≤ |B|

if there is an injective function
f : A → B then |A| ≤ |B|

∀xy. f(x) = f(y) ⇒ x = y

CFL 10, King’s College London – p. 23/37

A= { , , }

B= { , , }

then |A|= |B|

CFL 10, King’s College London – p. 24/37

A= { , , }

B= { , , }

then |A|= |B|

CFL 10, King’s College London – p. 24/37

A= { , , }

B= { , , }

then |A|= |B|

CFL 10, King’s College London – p. 24/37

Natural Numbers

N
def

= {0, 1, 2, 3,}

A is countable iff |A| ≤ |N|

CFL 10, King’s College London – p. 25/37

Natural Numbers

N
def

= {0, 1, 2, 3,}

A is countable iff |A| ≤ |N|

CFL 10, King’s College London – p. 25/37

First Question

|N − {0}| ? |N|

≥ or≤ or= ?

x 7→ x+ 1,
|N − {0}|= |N|

CFL 10, King’s College London – p. 26/37

First Question

|N − {0}| ? |N|

≥ or≤ or= ?

x 7→ x+ 1,
|N − {0}|= |N|

CFL 10, King’s College London – p. 26/37

|N − {0, 1}| ? |N|

|N − O| ? |N|

O
def
= odd numbers {1, 3, 5......}

E
def
= even numbers {0, 2, 4......}

CFL 10, King’s College London – p. 27/37

|N − {0, 1}| ? |N|

|N − O| ? |N|

O
def
= odd numbers {1, 3, 5......}

E
def
= even numbers {0, 2, 4......}

CFL 10, King’s College London – p. 27/37

|N − {0, 1}| ? |N|

|N − O| ? |N|

O
def
= odd numbers {1, 3, 5......}

E
def
= even numbers {0, 2, 4......}

CFL 10, King’s College London – p. 27/37

|N ∪−N| ? |N|

N
def
= positive numbers {0, 1, 2, 3,}

−N
def
= negative numbers {0,−1,−2,−3,}

CFL 10, King’s College London – p. 28/37

A is countable if there exists an
injective f : A → N

A is uncountable if there does not
exist an injective f : A → N

countable: |A| ≤ |N|
uncountable: |A| > |N|

Does there exist such an A ?

CFL 10, King’s College London – p. 29/37

A is countable if there exists an
injective f : A → N

A is uncountable if there does not
exist an injective f : A → N

countable: |A| ≤ |N|
uncountable: |A| > |N|

Does there exist such an A ?
CFL 10, King’s College London – p. 29/37

Hilbert’s Hotel

…has as many rooms as there are natural numbers

CFL 10, King’s College London – p. 30/37

Real Numbers between
0 and 1

1

2

3

4

3 3 3 3 3 3 . . .

1 2 3 4 5 6 7

0 1 0 1 0 . . .

7 8 5 3 9 . . .

. . .

. . .

|N| < |R|

CFL 10, King’s College London – p. 31/37

Real Numbers between
0 and 1

1

2

3

4

4 3 3 3 3 3 . . .

1 2 3 4 5 6 7

0 1 0 1 0 . . .

7 8 5 3 9 . . .

. . .

. . .

|N| < |R|

CFL 10, King’s College London – p. 31/37

Real Numbers between
0 and 1

1

2

3

4

4 3 3 3 3 3 . . .

1 3 3 4 5 6 7

0 1 0 1 0 . . .

7 8 5 3 9 . . .

. . .

. . .

|N| < |R|

CFL 10, King’s College London – p. 31/37

Real Numbers between
0 and 1

1

2

3

4

4 3 3 3 3 3 . . .

1 3 3 4 5 6 7

0 1 1 1 0 . . .

7 8 5 3 9 . . .

. . .

. . .

|N| < |R|

CFL 10, King’s College London – p. 31/37

Real Numbers between
0 and 1

1

2

3

4

4 3 3 3 3 3 . . .

1 3 3 4 5 6 7

0 1 1 1 0 . . .

7 8 5 4 9 . . .

. . .

. . .

|N| < |R|

CFL 10, King’s College London – p. 31/37

Real Numbers between
0 and 1

1

2

3

4

4 3 3 3 3 3 . . .

1 3 3 4 5 6 7

0 1 1 1 0 . . .

7 8 5 4 9 . . .

. . .

. . .

|N| < |R|
CFL 10, King’s College London – p. 31/37

The Set of Problems
ℵ0

1

2

3

4

0 1 2 3 4 5 . . .

0 1 0 1 0 1 . . .

0 0 0 1 1 0 0

0 0 0 0 0 . . .

1 1 0 1 1 . . .

. . .

. . .

|Progs|= |N|< |Probs|

CFL 10, King’s College London – p. 32/37

The Set of Problems
ℵ0

1

2

3

4

0 1 2 3 4 5 . . .

0 1 0 1 0 1 . . .

0 0 0 1 1 0 0

0 0 0 0 0 . . .

1 1 0 1 1 . . .

. . .

. . .

|Progs|= |N|< |Probs|
CFL 10, King’s College London – p. 32/37

Halting Problem

Assume a program H that decides for all
programs A and all input data Dwhether

H(A,D) def
= 1 iff A(D) terminates

H(A,D) def
= 0 otherwise

CFL 10, King’s College London – p. 33/37

Halting Problem (2)

Given such a program H define the
following program C: for all programs A

C(A) def
= 0 iff H(A,A) = 0

C(A) def
= loops otherwise

CFL 10, King’s College London – p. 34/37

Contradiction

H(C, C) is either 0 or 1.

H(C, C) = 1
defH⇒ C(C) ↓ def C⇒ H(C, C) = 0

H(C, C) = 0
defH⇒ C(C) loops

def C⇒
H(C, C) = 1

Contradiction in both cases. So H cannot exist.

CFL 10, King’s College London – p. 35/37

Take Home Points
there are sets that are more infinite than
others

even with the most powerful computer we
can imagine, there are problems that
cannot be solved by any program

in CS we actually hit quite often such
problems (halting problem)

CFL 10, King’s College London – p. 36/37

CFL 10, King’s College London – p. 37/37

CFL 10, King’s College London – p. 37/37

CFL 10, King’s College London – p. 37/37

CFL 10, King’s College London – p. 37/37

CFL 10, King’s College London – p. 37/37

CFL 10, King’s College London – p. 37/37

CFL 10, King’s College London – p. 37/37

CFL 10, King’s College London – p. 37/37

CFL 10, King’s College London – p. 37/37

CFL 10, King’s College London – p. 37/37

CFL 10, King’s College London – p. 37/37

CFL 10, King’s College London – p. 37/37

CFL 10, King’s College London – p. 37/37

CFL 10, King’s College London – p. 37/37

CFL 10, King’s College London – p. 37/37

CFL 10, King’s College London – p. 37/37

CFL 10, King’s College London – p. 37/37

CFL 10, King’s College London – p. 37/37

CFL 10, King’s College London – p. 37/37

CFL 10, King’s College London – p. 37/37

