
Handout 6 (Parser Combinators)
This handout explains how parser combinators work and how they can be im-
plemented in Scala. Their distinguishing feature is that they are very easy to
implement (admiĴedly it is only easy in a functional programming language).
However, parser combinators require that the grammar to be parsed is not left-
recursive and they are efficient only when the grammar is unambiguous. It is
the responsibility of the grammar designer to ensure these two properties.

Another good point of parser combinators is that they can deal with any
kind of input as long as this input of “sequence-kind”, for example a string or
a list of tokens. The general idea behind parser combinators is to transform the
input into sets of pairs, like so

list of tokens︸ ︷︷ ︸
input

⇒ set of (parsed input, unparsed input)︸ ︷︷ ︸
output

As said, the input can be anything as long as it is a “sequence”. The only prop-
erty of the input we need is to be able to test when it is empty. Obviously we
can do this for strings and lists. For more lucidity we shall below often use
strings as input in order to illustrate maĴers. However, this does not make our
previous work on lexers obsolete (remember they transform a string into a list
of tokens). Lexers will still be needed to build a somewhat realistic compiler.

In my Scala code I use the following polymorphic types for parser combi-
nators:

input: I output: T

that is they take as input something of type I and return a set of pairs of Set[(T,
I)]. Since the input needs to be of “sequence-kind” I actually have to often
write I <% Seq[_] for the input type in order to indicate it is a subtype of Scala
sequences. The first component of the generated pairs corresponds to what the
parser combinator was able to process from the input and the second is the
unprocessed part of the input (therefore the type of this unprocessed part is the
same as the input). As we shall see shortly, a parser combinator might return
more than one such pair; the idea being that there are potentially several ways
of how to parse the input. As a concrete example, consider the string

i f f o o t e s t b a r

Wemight have a parser combinator which tries to interpret this string as a key-
word (if) or as an identifier (iffoo). Then the output will be the set{(

i f , f o o t e s t b a r
)

,
(
i f f o o , t e s t b a r

)}
where the first pair means the parser could recognise if from the input and
leaves the rest as ‘unprocessed’ as the second component of the pair; in the
other case it could recognise iffoo and leaves testbar as unprocessed. If the

1

parser cannot recognise anything from the input, then parser combinators just
return the empty set {}. This will indicate something “went wrong”…or more
precisely, nothing could be parsed.

Also important to note is that the type T for the processed part is different
from the input type. The reason is that in general we are interested in trans-
form our input into something “different”…for example into a tree, or if we
implement the grammar for arithmetic expressions we might be interested in
the actual integer number the arithmetic expression, say 1 + 2 * 3, stands for.
In this way we can use parser combinators to implement relativaley easily a
calculator.

The main idea of parser combinators is that we can easily build parser com-
binators out of smaller components following very closely the structure of a
grammar. In order to implement this in an object-oriented programming lan-
guage, like Scala, we need to specify an abstract class for parser combinators.
This abstract class states that the function parse takes an argument of type I
and returns a set of type Set[(T, I)].

abstract class Parser[I, T] {
def parse(ts: I): Set[(T, I)]

def parse_all(ts: I): Set[T] =
for ((head, tail) <- parse(ts); if (tail.isEmpty))

yield head
}

It is the obligation in each instance (parser combinator) to supply an imple-
mentation for parse. From this function we can then “centrally” derive the
function parse_all, which just filters out all pairs whose second component is
not empty (that is has still some unprocessed part). The reason is that at the
end of the parsing we are only interested in the results where all the input has
been consumed and no unprocessed part is left over.

One of the simplest parser combinators recognises just a single character,
say c, from the beginning of strings. Its behaviour can be described as follows:

• If the head of the input string starts with a c, then return the set

{(c, tail of s)}
where tail of s is the unprocessed part of the input string.

• Otherwise return the empty set {}.
The input type of this simple parser combinator for characters is String and
the output type Set[(Char, String)]. The code in Scala is as follows:

case class CharParser(c: Char) extends Parser[String, Char] {
def parse(sb: String) =

if (sb.head == c) Set((c, sb.tail)) else Set()
}

2

You can see the parse function tests whether the first character of the input
string sb is equal to c. If yes, then it splits the string into the recognised part
c and the unprocessed part sb.tail. In case sb does not start with c then the
parser returns the empty set (in Scala Set()). Since this parser recognises char-
acters and just returns characters as the processed part, the output type of the
parser is Char.

If we want to parse a list of tokens and interested in recognising a number
token, we could write something like this

case object NumParser extends Parser[List[Token], Int] {
def parse(ts: List[Token]) = ts match {

case Num_token(s)::ts => Set((s.toInt, ts))
case _ => Set ()

}
}

In this parser the input is of type List[Token]. The function parse looks at the
input ts and checks whether the first token is a Num_token. Let us assume our
lexer generated these tokens for numbers. But this parser does not just return
this token (and the rest of the list), like the CharParser above, rather extracts
the string s from the token and converts it into an integer. The hope is that the
lexer did its work well and this conversion always succeeds. The consequence
of this is that the output type for this parser is Int. Such a conversion would
be needed if we want to implement a simple calculator program.

These simple parsers that just look at the input and do a simple transforma-
tion are often called atomic parser combinators. More interesting are the parser
combinators that build larger parsers out of smaller component parsers. For
example the alternative parser combinator is as follows: given two parsers, say,
p and q, we apply both parsers to the input (remember parsers are functions)
and combine the output (remember they are sets of pairs)

p(input) ∪ q(input)

In Scala we would implement alternative parser combinator as follows

class AltParser[I, T]
(p: => Parser[I, T],
q: => Parser[I, T]) extends Parser[I, T] {

def parse(sb: I) = p.parse(sb) ++ q.parse(sb)
}

The types of this parser combinator are again generic (we just have I for the
input type, and T for the output type). The alternative parser builds a new
parser out of two existing parsers p and q. Both need to be able to process

3

input of type I and return the same output type Set[(T, I)].1 Therefore the
output type of this parser is T. The alternative parser should run the input with
the first parser p (producing a set of pairs) and then run the same input with
q (producing another set of pairs). The result should be then just the union of
both sets, which is the operation ++ in Scala.

The alternative parser combinator already allows us to construct a parser
that parses either a character a or b, as

new AltParser(CharParser('a'), CharParser('b'))

Later on we will use again Scala mechanism for introducing some more read-
able shorthand notation for this, like "a" || "b". Let us look in detail at what
this parser combinator produces with some somple strings

input strings output

a c d e →
{
(a , c d e)

}
b c d e →

{
(b , c d e)

}
c c d e → {}

We receive in the first two cases a successful output (that is a non-empty set).
In each case, either a or b is in the processed part, and cde in the unprocessed
part. Clearly this parser cannot parse anything in the string ccde, therefore the
empty set.

A bit more interesting is the sequence parser combinator. Given two parsers,
say again, p and q, we want to apply first the input to p producing a set of pairs;
then apply q to all the unparsed parts in the pairs; and then combine the results
like

{((output1, output2), u2) | (output1, u1) ∈ p(input) ∧
(output2, u2) ∈ q(u1)}

Notice that the p wil first be run on the input, producing pairs of the form
(output1, u1) where the u1 stands for the unprocessed, or left-over, parts. We
want that q runs on all these unprocessed parts u1. This again will produce
some processed part , p and q, we apply both parsers to the input (remember
parsers are functions) and combine the output (remember they are sets of pairs)

p(input) ∪ q(input)

In Scala we would implement alternative parser combinator as follows
1There is an interesting detail of Scala, namely the => in front of the types of p and q. They will

prevent the evaluation of the arguments before they are used. This is often called lazy evaluation of
the arguments. We will explain this later.

4

class AltParser[I, T]
(p: => Parser[I, T],
q: => Parser[I, T]) extends Parser[I, T] {

def parse(sb: I) = p.parse(sb) ++ q.parse(sb)
}

The types of this parser combinator are again generic (we just have I for the
input type, and T for the output type). The alternative parser builds a new
parser out of two existing parsers p and q. Both need to be able to process
input of type I and return the same output type Set[(T, I)].2 Therefore the
output type of this parser is T. The alternative parser should run the input with
the first parser p (producing a set of pairs) and then run the same input with
q (producing another set of pairs). The result should be then just the union of
both sets, which is the operation ++ in Scala.

The alternative parser combinator already allows us to construct a parser
that parses either a character a or b, as

new AltParser(CharParser('a'), CharParser('b'))

Later on we will use again Scala mechanism for introducing some more read-
able shorthand notation for this, like "a" || "b". Let us look in detail at what
this parser combinator produces with some somple strings

input strings output

a c d e →
{
(a , c d e)

}
b c d e →

{
(b , c d e)

}
c c d e → {}

We receive in the first two cases a successful output (that is a non-empty set).
In each case, either a or b is in the processed part, and cde in the unprocessed
part. Clearly this parser cannot parse anything in the string ccde, therefore the
empty set.

A bit more interesting is the sequence parser combinator. Given two parsers,
say again, p and q, we want to apply first the input to p producing a set of pairs;
then apply q to all the unparsed parts in the pairs; and then combine the results
like

{((output1, output2), u2) | (output1, u1) ∈ p(input) ∧
(output2, u2) ∈ q(u1)}

Notice that the p wil first be run on the input, producing pairs of the form
output1 and unprocessed part u1. The overall result of the sequence parser com-
binator is pairs of the form ((output1, output2), u2). This means the unprocessed

2There is an interesting detail of Scala, namely the => in front of the types of p and q. They will
prevent the evaluation of the arguments before they are used. This is often called lazy evaluation of
the arguments. We will explain this later.

5

parts of both parsers is the unprocessed parts the second parser q produces as
left-over. The processed parts of both parsers is just the pair of the outputs
(output1, output2). This behavious can be implemented in Scala as follows:

class SeqParser[I, T, S]
(p: => Parser[I, T],
q: => Parser[I, S]) extends Parser[I, (T, S)] {

def parse(sb: I) =
for ((output1, u1) <- p.parse(sb);

(output2, u2) <- q.parse(u1))
yield ((output1, output2), u2)

}

This parser takes again as input two parsers, p and q. It implements parse as
follows: let first run the parser p on the input producing a set of pairs (output1,
u1). The u1 stands for the unprocessed parts left over by p. Let q run on these
unprocessed parts producing again a set of pairs. The output of the sequence
parser combinator is then a set containing pairs where the first components are
again pairs, namely what the first parser could parse together with what the
second parser could parse; the second component is the unprocessed part left
over after running the second parser q. Therefore the input type of the sequence
parser combinator is as usual I, but the output type is

Set[((T, S), I)]

If any of the runs of p and q fail, that is produce the empty set, then parse will
also produce the empty set. Notice that we have now two output types for the
sequence parser combinator, because in general p and qmight produce differetn
things (for example first we recognise a number and then a string correspond-
ing to an operator).

We have not yet looked at this in detail, but Scala allows us to provide some
shorthand notation for the sequence parser combinator. We can write for ex-
ample "a" ~ "b", which is the parser combinator that first recognises the char-
acter a from a string and then b. Let us look again at three examples of how this
parser combinator processes strings:

input strings output

a b c d e →
{
((a , b), c d e)

}
b a c d e → {}
c c c d e → {}

In the first line we have a sucessful parse, because the string started with ab,
which is the prefix we are looking for. But since the parsing combinator is con-
structed as sequence of the two simple (atomic) parsers for a and b, the result
is a nested pair of the form ((a, b), cde). It is not a simple pair (ab, cde) as

6

one might errorneously expects. The parser returns the ampty set in the other
examples, because they do not fit with what the parser is supposed to parse.

A slightly more complicated parser is ("a" || "b") ~ "c". which parses
as first character either an a or b followed by a c. This parser produces the
following outputs.

input strings output

a b c →
{
((a , b), c)

}
b b c →

{
((b , b), c)

}
a a c → {}

Two more examples: first consider the parser ('a' ~ 'a') ~ 'a' and the in-
put aaaa:

input string output

a a a a →
{
(((a , a), a), a)

}
Notice how the results nest deeper and deeper as pairs (the last a is in the un-
processed part). To consume everything of this string we can use the parser
(('a' ~'a') ~ 'a') ~ 'a'. Then the output is as follows:

input string output

a a a a →
{
((((a , a), a), a), "")

}
This is an instance where the parser consumed completely the input, meaning
the unprocessed part is just the empty string.

Note carefully that constructing a parser such 'a' || ('a' ~ 'b')will re-
sult in a typing error. The first parser has as output type a single character (re-
call the type of CharParser), but the second parser produces a pair of characters
as output. The alternative parser is however required to have both component
parsers to have the same type. We will see later how we can build this parser
without the typing error.

The next parser combinator does not actually combine smaller parsers, but
applies a function to the result of a parser. It is implemented in Scala as follows

class FunParser[I, T, S]
(p: => Parser[I, T],
f: T => S) extends Parser[I, S] {

def parse(sb: I) =
for ((head, tail) <- p.parse(sb)) yield (f(head), tail)

}

This parser combinator takes a parser p with output type T as one argument
as well as a function f with type T => S. The parser p produces sets of type
(T, I). The FunParser combinator then applies the function f to all the parser
outputs. Since this function is of type T => S, we obtain a parser with output
type S. Again Scala lets us introduce some shorthand notation for this parser
combinator. Therefore we will write p ==> f for it.

7

How to build parsers using parser combinators?

Implementing an Interpreter

8

