
Handout 5
Whenever you want to design a programming language or implement a compiler
for an existing language, the first task is to fix the basic “words” of the language,
like what are the keywords or reserved words of the language, what are permitted
identifiers, numbers and so on. One convenient way to do this is, of course,
to use regular expressions. In this course we want to take a closer look at the
WHILE-language. This is a simple imperative language consisting of arithmetic
expressions, assignments and loops only. For example the Fibonacci program
can be written in this language as follows

1 write "Input a number ";
2 read n;
3 x := 0;
4 y := 1;
5 while n > 0 do {
6 temp := y;
7 y := x + y;
8 x := temp;
9 n := n - 1

10 };
11 write "Result ";
12 write y

The keywords in this language will be

while, if, then, else, write, read

In addition we will have some typical operators, like <, >, := and so on; num-
bers and strings (which we however ignore for the moment). We also need to
specify what the “white space” is in our programming language as well as what
comments should look like. We might specify the regular expressions for our
language roughly as follows

KEYWORD := while+ if+ then+ else+ . . .
IDENT := LETTER · (LETTER + DIGIT + _)∗

OP := :=+ <+ . . .

NUM := DIGIT+

WHITESPACE := ” ” + \n

with the usual meanings for the regular expressions LETTER and DIGIT.
The problem we have to solve is given a string of our programming language,

which regular expression matches which part of the string. For example the
input string

..i ..f .. ..t ..r ..u ..e .. ..t ..h ..e ..n .. ..x ..+ ..2 .. ..e ..l ..s ..e .. ..x ..+ ..3

needs to be recognised as

1



..i ..f .. ..t ..r ..u ..e .. ..t ..h ..e ..n .. ..x ..+ ..2 .. ..e ..l ..s ..e .. ..x ..+ ..3

Since if matches the KEYWORD regular expression, is a whitespace and
so on. This process of separating an input string into components is often
called lexing or scanning. It is usually the first phase of a compiler. Note that
the separation into words cannot, in general, be done by looking at whitespaces:
while if and true are separated by a whitespace, the components in x+2 are not.
Another reason for recognising whitespaces explicitly is that in some languages,
for example Python, whitespace matters. However in our small language we
will eventually filter out all whitespaces and also comments.

Lexing will not just separate the input into its components, but also classify
the components, that is explicitly record that it is a keyword, a whitespace,
true an identifier and so on. But for the moment we will only focus on the sim-
pler problem of separating a string into components. There are a few subtleties
we need to consider first. For example if the input string is

..i ..f ..f ..o ..o .. ..…

then there are two possibilities: either we regard the input as the keyword if
followed by the identifier foo (both regular expressions match) or we regard
iffoo as a single identifier. The choice that is often made in lexers to look for
the longest possible match, that is regard the input as a single identifier iffoo
(since it is longer than if).

2


