
CSCI 742 - Compiler Construction

Lecture 34
Available Expressions Analysis

Instructor: Hossein Hojjat

April 18, 2018



Recap: Live Variable Analysis

• Compute which variables are live at each program point

• Live variable information flows backward

• Derive a system of constraints between live variable sets

in(S) =
(
out(S) \ def(S)

)
∪ use(S)

out(S) =
⋃

Si∈succ(S)

in(Si)

• Solve constraints in an iterative algorithm

1



Available Expressions

Idea: some computation may be a redundant repetition of earlier
computation within the same program

An expression like x+y is available at a statement S if

• Every path from the entry node to S compute x+y before reaching S

• There are no assignments to x or y since the last time x+y was
computed on the paths to S

Optimization: If an expression is available, don’t need to recompute it

2



Example: Available Expression

• Is the expression available?

x = y + z

w = v − u

u = x× z

t = x× z

w = x− t

y = x+ z

s = z + u

u = x× z + y + z + w

?

3



Example: Available Expression

• Is the expression available?

x = y + z

w = v − u

u = x× z

t = x× z

w = x− t

y = x+ z

s = z + u

u = x× z + y + z + w

yes

3



Example: Available Expression

• Is the expression available?

x = y + z

w = v − u

u = x× z

t = x× z

w = x− t

y = x+ z

s = z + u

u = x× z + y + z + w

?

3



Example: Available Expression

• Is the expression available?

x = y + z

w = v − u

u = x× z

t = x× z

w = x− t

y = x+ z

s = z + u

u = x× z + y + z + w

yes

3



Example: Available Expression

• Is the expression available?

x = y + z

w = v − u

u = x× z

t = x× z

w = x− t

y = x+ z

s = z + u

u = x× z + y + z + w

?

3



Example: Available Expression

• Is the expression available?

x = y + z

w = v − u

u = x× z

t = x× z

w = x− t

y = x+ z

s = z + u

u = x× z + y + z + w

no

3



Example: Available Expression

• Is the expression available?

x = y + z

w = v − u

u = x× z

t = x× z

w = x− t

y = x+ z

s = z + u

u = x× z + y + z + w

?

3



Example: Available Expression

• Is the expression available?

x = y + z

w = v − u

u = x× z

t = x× z

w = x− t

y = x+ z

s = z + u

u = x× z + y + z + w

no

3



Example: Available Expression

• Is the expression available?

x = y + z

w = v − u

u = x× z

t = x× z

w = x− t

y = x+ z

s = z + u

u = x× z + y + z + w

?

3



Example: Available Expression

• Is the expression available?

x = y + z

w = v − u

u = x× z

t = x× z

w = x− t

y = x+ z

s = z + u

u = x× z + y + z + w

yes

3



Example: Available Expression

• Is the expression available?

x = y + z

w = v − u

u = x× z

t = x× z

w = x− t

y = x+ z

s = z + u

u = x× z + y + z + w

?

3



Example: Available Expression

• Is the expression available?

x = y + z

w = v − u

u = x× z

t = x× z

w = x− t

y = x+ z

s = z + u

u = x× z + y + z + w

yes

3



Example: Available Expression

• How can we use available expression?

x = y + z

w = v − u

u = x× z

t = x× z

w = x− t

y = x+ z

s = z + u

u = x× z + y + z + w

3



Example: Available Expression

• How can we use available expression?

x = y + z

w = v − u

u = x× z

t = u

w = x− t

y = x+ z

s = z + u

u = x× z + y + z + w

3



Example: Available Expression

• How can we use available expression?

x = y + z

w = v − u

u = x× z

t = u

w = x− t

y = x+ z

s = z + u

u = x× z + y + z + w

3



Example: Available Expression

• How can we use available expression?

x = y + z

w = v − u

u = x× z

t = u

w = x− t

y = x+ z

s = z + u

u = u+ y + z + w

3



Available Expression Analysis: Forward

• Available expression analysis is a forward data-flow analysis
• Information from past instructions must be propagated forward

through the program to discover which expressions are available

...
int z = x * y;

}

int t = x*y; println(x*y);

if(x*y!=6) ...;

• Unlike variable liveness, expression availability flows forward through
the program

• Like liveness, each instruction has an effect on the availability
information as it flows past

4



Available Expression Analysis

• A statement makes an expression available when it generates
(computes) its current value

5

{x+y, v+5}

{x+y, v+5, z*t}
w = z * t;

{x+y}

{}

generates z*t

generates v+5

generates x+y

u = v + 5;

print(x+y);



Available Expression Analysis

• A statement makes an expression unavailable when it kills
(invalidates) its current value

5

{z*t, t-1}

{}
t = 7;

{v+5, z*t, t-1}

{x+y, v+5, z*t, t-1}

kills z*t,t-1

kills v+5

kills x+y

v = 11;

x = 5;



Available Expression Analysis

• As in Live Variable Analysis, we create functions gen(S) and kill(S)
which give the sets of expressions the statement S generates and kills

• Assignment to a variable x kills all expressions in the program which
contain occurrences of x (Ex )

gen(println(x+5)) = { x+5 }

{y-1}

{y-1, x+5}

kill(x = 3) = { Ex }

{y-1}

{y-1, x+5}

6



Available Expression Analysis

• If a statement both generates and kills expressions, remove the killed
expressions after adding the generated ones

x = x + y

A0

A2

A0

A2 = A1 \ Ex

A1 = A0 ∪ {x+y}

compute (x+y)

write(x)

gen(x = x + y ) = {x+y} kill(x = x + y ) = { Ex }
In general:

• in(S): set of available expressions immediately before statement S
• out(S): set of available expressions immediately after statement S

out(S) =
(
in(S) ∪ gen(S)

)
\ kill(S)

7



Multiple Successors

• An expression is available at beginning of statement S if it is
available at the end of all predecessor statements

S

S1 Sn

in(S) =
⋂

Si∈pred(S)

out(Si)

8



Data-flow Equations

• Start with CFG and derive a system of constraints between sets of
available expressions

out(S) =
(
in(S) ∪ gen(S)

)
\ kill(S)

in(S) =
⋂

Si∈pred(S)

out(Si)

Solve constraints:

• Start with empty set of available expressions at start and universal
set of available expressions everywhere else

• Iteratively apply constraints

• Stop when we reach a fixed point

9



Exercise

Compute the set of available expressions at each point of the program

a = x− y

[x 6= 0]

[x = 0]

x = z

b = x− y

i = x− y

[i < n] [¬(i < n)]

c = x− y

i = i+ c

d = x− y

A0 = {}

A1 = {all}

A4 = {all}

A5 = {all}

A6 = {all}

A8 = {all}A9 = {all}

A10 = {all}

A7 = {all}

A3 = {all}

A2 = {all}

10



Exercise

Compute the set of available expressions at each point of the program

a = x− y

[x 6= 0]

[x = 0]

x = z

b = x− y

i = x− y

[i < n] [¬(i < n)]

c = x− y

i = i+ c

d = x− y

A0 = {}

A1 = {x− y}

A4 = {all}

A5 = {all}

A6 = {all}

A8 = {all}A9 = {all}

A10 = {all}

A7 = {all}

A3 = {all}

A2 = {all}

10



Exercise

Compute the set of available expressions at each point of the program

a = x− y

[x 6= 0]

[x = 0]

x = z

b = x− y

i = x− y

[i < n] [¬(i < n)]

c = x− y

i = i+ c

d = x− y

A0 = {}

A1 = {x− y}

A4 = {all}

A5 = {all}

A6 = {all}

A8 = {all}A9 = {all}

A10 = {all}

A7 = {all}

A3 = {all}

A2 = {x = 0, x− y}

10



Exercise

Compute the set of available expressions at each point of the program

a = x− y

[x 6= 0]

[x = 0]

x = z

b = x− y

i = x− y

[i < n] [¬(i < n)]

c = x− y

i = i+ c

d = x− y

A0 = {}

A1 = {x− y}

A4 = {all}

A5 = {all}

A6 = {all}

A8 = {all}A9 = {all}

A10 = {all}

A7 = {all}

A3 = {}

A2 = {x = 0, x− y}

10



Exercise

Compute the set of available expressions at each point of the program

a = x− y

[x 6= 0]

[x = 0]

x = z

b = x− y

i = x− y

[i < n] [¬(i < n)]

c = x− y

i = i+ c

d = x− y

A0 = {}

A1 = {x− y}

A4 = {all}

A5 = {all}

A6 = {all}

A8 = {all}A9 = {all}

A10 = {all}

A7 = {all}

A3 = {}

A2 = {x = 0, x− y}

out(`′) = {x− y}

out(`) = {x− y, x 6= 0}
` :

`′ :

10



Exercise

Compute the set of available expressions at each point of the program

a = x− y

[x 6= 0]

[x = 0]

x = z

b = x− y

i = x− y

[i < n] [¬(i < n)]

c = x− y

i = i+ c

d = x− y

A0 = {}

A1 = {x− y}

A4 = {x− y}

A5 = {all}

A6 = {all}

A8 = {all}A9 = {all}

A10 = {all}

A7 = {all}

A3 = {}

A2 = {x = 0, x− y}

out(`′) = {x− y}

out(`) = {x− y, x 6= 0}
` :

`′ :

10



Exercise

Compute the set of available expressions at each point of the program

a = x− y

[x 6= 0]

[x = 0]

x = z

b = x− y

i = x− y

[i < n] [¬(i < n)]

c = x− y

i = i+ c

d = x− y

A0 = {}

A1 = {x− y}

A4 = {x− y}

A5 = {x− y}

A6 = {all}

A8 = {all}A9 = {all}

A10 = {all}

A7 = {all}

A3 = {}

A2 = {x = 0, x− y}

out(`′) = {x− y}

out(`) = {x− y, x 6= 0}
` :

`′ :

10



Exercise

Compute the set of available expressions at each point of the program

a = x− y

[x 6= 0]

[x = 0]

x = z

b = x− y

i = x− y

[i < n] [¬(i < n)]

c = x− y

i = i+ c

d = x− y

A0 = {}

A1 = {x− y}

A4 = {x− y}

A5 = {x− y}

A6 = {x− y,¬(i < n)}

A8 = {x− y,¬(i < n)}A9 = {x− y, i < n}

A10 = {x− y}

A7 = {x− y, i < n}

A3 = {}

A2 = {x = 0, x− y}

out(`′) = {x− y}

out(`) = {x− y, x 6= 0}
` :

`′ :

10



Exercise

Compute the set of available expressions at each point of the program

a = x− y

[x 6= 0]

[x = 0]

x = z

b = a

i = a

[i < n] [¬(i < n)]

c = a

i = i+ c

d = a

A0 = {}

A1 = {x− y}

A4 = {x− y}

A5 = {x− y}

A6 = {x− y,¬(i < n)}

A8 = {x− y,¬(i < n)}A9 = {x− y, i < n}

A10 = {x− y}

A7 = {x− y, i < n}

A3 = {}

A2 = {x = 0, x− y}

out(`′) = {x− y}

out(`) = {x− y, x 6= 0}
` :

`′ :

10



Data-flow Equations Comparison

Live Variable Analysis

in-live(S) =
(
out-live(S) \ def(S)

)
∪ use(S)

out-live(S) =
⋃

Si∈succ(S)

in-live(Si)

Available Expression Analysis

out-avail(S) =
(
in-avail(S) ∪ gen(S)

)
\ kill(S)

in-avail(S) =
⋂

Si∈pred(S)

out-avail(Si)

11


