
CSCI 742 - Compiler Construction

Lecture 32
Control Flow Graphs

Instructor: Hossein Hojjat

April 13, 2018



Recap: Optimizations

• Optimizations: code transformations that improve the program
- Usually to improve execution time
- Sometimes to reduce program size or power usage

• Can be done at high-level or low-level
- e.g. constant folding

• Optimizations must preserve the original behavior of program

• Execution of transformed code must yield same result as the original
code for every possible input

• Example: dead code elimination

• Variable is dead if value is never used after definition

• Eliminate assignments to dead variables

1



Optimization Correctness: Dead Code Elimination

• Which assignments are dead and can be removed?

2

x = y - 1;
y = z * 2;
x = y - z;
z = 10;
z = x;



Optimization Correctness: Dead Code Elimination

• Which assignments are dead and can be removed?

• Is x dead at first statement?

• Need to know if values assigned to x is never used later

• Obvious for this simple example (with no control flow)

• Not obvious for complex flow of control
2

x = y - 1;
y = z * 2;
x = y - z;
z = 10;
z = x;



Optimization Correctness: Dead Code Elimination

• Which assignments are dead and can be removed?

• Is x dead at first statement?

• Need to know if values assigned to x is never used later

• Obvious for this simple example (with no control flow)

• Not obvious for complex flow of control
2

x = y - 1;
y = z * 2;
x = y - z;
z = 10;
z = x;



Optimization Correctness: Dead Code Elimination

• Add control flow to example

• Is x = y - 1 dead code? Is z = 10 dead code?

2

x = y - 1;
y = z * 2;
if (c1) x = y - z;
z = 10;
z = x;



Optimization Correctness: Dead Code Elimination

• Add control flow to example

• Is x = y - 1 dead code? Is z = 10 dead code?

• Statement x = y - 1 is not dead code anymore

• On some executions, value is used later

2

x = y - 1;
y = z * 2;
if (c1) x = y - z;
z = 10;
z = x;



Optimization Correctness: Dead Code Elimination

• Add more control flow to example

• Is x = y - 1 dead code? Is z = 10 dead code?

2

while(c2) {
x = y - 1;
y = z * 2;
if (c1) x = y - z;
z = 10; }
z = x;



Optimization Correctness: Dead Code Elimination

• Add more control flow to example

• Is x = y - 1 dead code? Is z = 10 dead code?

• Statement x = y - 1 not dead anymore

• Statement z = 10 not dead either

• On some executions, value from z = 10 is used later
2

while(c2) {
x = y - 1;
y = z * 2;
if (c1) x = y - z;
z = 10; }
z = x;



Low-level Code

• Harder to eliminate dead code in low-level code
0: iload_1
1: ifeq 32
4: iload_3
5: iconst_1
6: isub
7: istore_2
8: iload 4

10: iconst_2
11: imul
12: istore_3
13: iload_0
14: ifeq 22
17: iload_3
18: iload 4
20: isub
21: istore_2
22: bipush 10
24: istore 4
26: iload_2
27: istore 4
29: goto 0 3



Optimizations and Control Flow

• Application of optimizations requires information
- e.g. dead code elimination needs to know if variables are dead when

assigned values

• Required information are not usually explicit in the program

• We must compute it statically (at compile-time)

• Must characterize all dynamic (run-time) executions

• Control flow makes it hard to extract information

- Branches and loops in the program

- Different executions =
different branches taken,
different number of loop iterations executed

4



Control Flow Graphs

• Control Flow Graph: graph representation of computation and
control flow in the program

• Specifies all possible execution paths

x = 1

while (x < 50) {

x = x + 2

}

[¬(x < 50)]

[(x < 50)]

exit

entry

x = 1

x = x+ 2

5



Generating Control-Flow Graphs

• Control-Flow graph is similar to AST

• Start with graph that has one entry and one exit node

• Draw an edge from entry to exit and label it with the entire program

exit

entry

program

• Recursively decompose the program to have more edges
with simpler labels

• When labels cannot be decomposed further, we are done

6



Flattening Expressions

• Label flattening: simplify a label, make an order on the side effects

E1, E2 : complex expressions

t1, t2 : fresh variables

x = E1 ∗ E2 ⇒
t1 = E1

t2 = E2

x = t1 ∗ t2

7



Conditional Statement

if (e) s1 else s2 ⇒
b = e

[(b)]

s1

b is fresh variable

[¬(b)]

s2

• Translation using branch instruction with two destinations

branch (e1&&e2) ⇒
s1 s2

branch (e1)

s1 s2

branch (e2)

8



while Statement

while (e) {s} ⇒
b = e

[(b)]

b is fresh variable

[¬(b)]

s

• Translation using the branch instruction

while (e) {s} ⇒ branch(e)

s

9



Exercise 1: Convert to CFG

while(c2) {

x = y - 1;

y = z * 2;

if (c1) x = y - z;

z = 10;

}

z = x;

x := y − 1

[¬c2]

entry

[c2]

y := z × 2

[c1]

x := y − z

z := 10

z := x

[¬c1]

exit

10



Exercise 1: Convert to CFG

while(c2) {

x = y - 1;

y = z * 2;

if (c1) x = y - z;

z = 10;

}

z = x;

x := y − 1

[¬c2]

entry

[c2]

y := z × 2

[c1]

x := y − z

z := 10

z := x

[¬c1]

exit
10



Exercise 2: Convert to CFG

int i = n;

while (i > 1) {

println(i);

if (i % 2 == 0) {

i = i / 2;

} else {

i = 3*i + 1;

}

}

11



Control Flow Graph Construction

[s1; s2] vsource vtarget =

[s1] vsource vfresh

[s2] vfresh vtarget

insert(vs, stmt, vt) = cfg + (vs, stmt, vt)

[x = y + z] vs vt = insert(vs, x = y + z, vt)

where y, y are constants or variables

[branch(x < y)] vsource vtrue vfalse =

insert(vsource, [x < y], vtrue);

insert(vsource, [!(x < y)], vfalse)

12


