
CSCI 742 - Compiler Construction

Lecture 4
Manual Construction of Lexers

Instructor: Hossein Hojjat

January 24, 2018

Recap: Regular Expressions

Regular expression over alphabet Σ:

1. ε is a RE denoting the set {ε}
2. if a ∈ Σ, then a is a RE denoting {a}
3. if r and s are REs, denoting L(r) and L(s), then:

- r | s is a RE denoting L(r) ∪ L(s)

- r . s is a RE denoting L(r).L(s)

- r∗ is a RE denoting L(r)∗

1

Exercise

Which regular expression is equivalent to (0|1) ∗ 1(0|1)∗

• (01|11) ∗ (0|1)∗
• (0|1) ∗ (10|11|1)(0|1)∗
• (0|1) ∗ (0|1)(0|1)∗

2

Exercise

Which regular expression is equivalent to (0|1) ∗ 1(0|1)∗

• (01|11) ∗ (0|1)∗ no (it allows 0)

• (0|1) ∗ (10|11|1)(0|1)∗
• (0|1) ∗ (0|1)(0|1)∗

2

Exercise

Which regular expression is equivalent to (0|1) ∗ 1(0|1)∗

• (01|11) ∗ (0|1)∗ no (it allows 0)

• (0|1) ∗ (10|11|1)(0|1)∗ yes

• (0|1) ∗ (0|1)(0|1)∗

2

Exercise

Which regular expression is equivalent to (0|1) ∗ 1(0|1)∗

• (01|11) ∗ (0|1)∗ no (it allows 0)

• (0|1) ∗ (10|11|1)(0|1)∗ yes

• (0|1) ∗ (0|1)(0|1)∗ no (it allows 0)

2

Lexical Analysis

Input:

i f (x = = 0) x = x + 1 ;

Output:

IF , LPAREN , ID(x) , EQUALS , INTLIT(0) , RPAREN , ID(x) ,
EQSIGN , ID(x) , PLUS , INTLIT(1) , SEMICOLON

Two approaches to construct lexical analyzers:

1. Manual construction: use first character to decide on token class
(This lecture)

2. Automatic construction: conversion of regular expressions to
automata
• Tools like JFlex are lexer generators for Java

3

Interfaces for Lexer

• In practice, a lexer reads characters and generate tokens on demand

• It work with streams instead of sequences, with procedures like
• current returns current element in stream
• next advance the current element

• Lexer operates on a character input stream and returns a token
output stream

4

Lexer input and Output

class CharStream {

String fileName;

FileReader reader = new

FileReader(fileName);

BufferedReader file = new

BufferedReader(reader);

char current = ’ ’;

Boolean eof = false;

void next() throws

Exception {

if (eof)

throw

EndOfInput("reading");

int c = file.read();

eof = (c == -1);

current = (char) c;

}

i
f
(
x
=
=
0
)

x
=
x
+

if
(

==
0
)
x
=
x
+

x

1
;

1
;

lexer

// representation of a token

public class Token {

public static final int EOF = 0;

public static final int ID = 1;//x

public static final int INT = 2;

public static final int LPAREN = 3;

public static final int RPAREN = 4;

public static final int SCOLON = 5;

public static final int WHILE = 6;

public static final int AssignEQ = 7;

public static final int CompareEQ = 8;

public static final int MUL = 9;

public static final int DIV = 10;

public static final int PLUS = 11;

public static final int LEQ = 12;

public static final int IF = 13;

// ...

}

class Lexer {

CharStream ch;

Token current;

void next() {

/*lexer code goes here*/}

}

Stream of Characters:
CharStream.next()

Stream of Tokens:
Lexer.next()

5

Recognizing Identifiers and Keywords

char c = ch.current;

if (Character.isLetter(c)) {

StringBuffer b = new

StringBuffer();

while (Character.isLetter(c)

|| Character.isDigit(c)){

b.append(c);

ch.next(); c = ch.current;

}

}

if(!keywords.containsKey(b.toString)){

token.kind = ID;

token.id = b;

}

else token.kind = KW;

• regular expression for identifiers:

letter (letter|digit)*

• Keywords look like identifiers
but are reserved as keywords in
language definition

• keywords: A constant Map
from strings to keyword tokens

• if identifier is not in map, then
it is ordinary identifier

6

Recognizing Identifiers and Keywords

char c = ch.current;

if (Character.isDigit(c)) {

int k = 0;

while (Character.isDigit(c)) {

k = 10*k +

Character.getNumericValue(c);

ch.next(); c = ch.current;

}

token.kind = INT;

token.value = k;

}

• regular expression for integers:

digit digit*

7

Deciding which Token is Coming

• How do we know the class of the token we are supposed to analyze
(string, integer, identifier, ...)?

• Manual construction: use lookahead (next symbol in stream) to
decide on token class

• compute FIRST(e) - symbols with which e can start

• check in which FIRST(e) current token is

• If L ⊆ Σ∗ is a language, then FIRST(L) is set of all alphabet
symbols that start some word in L

FIRST(L) = {a ∈ Σ | ∃v ∈ Σ ∗ . (a.v) ∈ L}

8

FIRST of Some Languages

• FIRST({ab, bb, a}) = {a, b}
• FIRST({a, ab}) = {a}
• FIRST({bbbbbbbbbb}) = {b}
• FIRST({a}) = {a}
• FIRST({}) = {}
• FIRST({ε}) = {}
• FIRST({ε, ba}) = {b}

9

FIRST of a Regular Expression

• Given regular expression e, how to compute FIRST(e)?
• Use automata (will discuss later)
• Rules that directly compute them

(also work for grammars, we will see them for parsing)

• Examples of FIRST(e) computation:
- FIRST(ab∗) = {a}
- FIRST(ab ∗ |c) = {a, c}
- FIRST(a ∗ b ∗ c) = {a, b, c}
- FIRST((cb|a ∗ c∗)d ∗ e) = {a, c, d, e}

10

FIRST of a Regular Expression

• Given regular expression e, how to compute FIRST(e)?
• Use automata (will discuss later)
• Rules that directly compute them

(also work for grammars, we will see them for parsing)

• Examples of FIRST(e) computation:
- FIRST(ab∗) = {a}
- FIRST(ab ∗ |c) = {a, c}
- FIRST(a ∗ b ∗ c) = {a, b, c}
- FIRST((cb|a ∗ c∗)d ∗ e) =

{a, c, d, e}

10

FIRST of a Regular Expression

• Given regular expression e, how to compute FIRST(e)?
• Use automata (will discuss later)
• Rules that directly compute them

(also work for grammars, we will see them for parsing)

• Examples of FIRST(e) computation:
- FIRST(ab∗) = {a}
- FIRST(ab ∗ |c) = {a, c}
- FIRST(a ∗ b ∗ c) = {a, b, c}
- FIRST((cb|a ∗ c∗)d ∗ e) = {a, c, d, e}

10

FIRST of Regular Expression

FIRST: RegExp → Σ , FIRST(e) ⊆ Σ

Define recursively:

• FIRST(∅) = ∅
• FIRST(ε) = ∅
• FIRST(a) = {a}
• FIRST(e1|e2) = FIRST(e1) ∪ FIRST(e2)

• FIRST(e∗) = FIRST(e)

• FIRST(e1.e2) = FIRST(e1) ∪ FIRST(e2) , if nullable(e1)
FIRST(e1) , otherwise

We need the notion of nullable(e):
whether ε belongs to the regular language

11

nullable

Can regular expr contain empty word? nullable(L) means ε ∈ L
nullable: RegExp → {true, false}

Define recursively:

• nullable(∅) = false

• nullable(ε) = true

• nullable(a) = false

• nullable(e1 | e2) = nullable(e1) ∨ nullable(e2)

• nullable(e∗) = true

• nullable(e1.e2) = nullable(e1) ∧ nullable(e2)

12

From RE to Programs

• Converting Well-Behaved Regular Expression into Programs

Regular Expression Code
a if (current=a) next else error
r1.r2 (code for r1) ; (code for r2)
(r1 | r2) if (current in FIRST(r1))

code for r1
when FIRST(r1) ∩ FIRST(r2) = ∅ else

code for r2
r∗ while(current in FIRST(r))

code for r

13

Decision Tree to Map Symbols to Tokens

switch (ch.current) {

case ’(’ : { current = OPAREN; ch.next(); return; }

case ’)’ : { current = CPAREN; ch.next(); return; }

case ’+’ : { current = PLUS; ch.next(); return; }

case ’/’ : { current = DIV; ch.next(); return; }

case ’*’ : { current = MUL; ch.next(); return; }

case ’=’ : { // more tricky because there can be =, ==

ch.next();

if (ch.current == ’=’)

{ ch.next(); current = CompareEQ; return; }

else { current = AssignEQ; return; }

}

case ’<’ : { // more tricky because there can be <, <=

ch.next();

if (ch.current == ’=’)

{ ch.next(); current = LEQ; return; }

else { current = LESS; return; }

}

}
14

Subtleties in General Case

• Sometimes FIRST(e1) and FIRST(e2) overlap for two different token
classes

- e.g. AssignEQ “=” and CompareEQ “==”

• Must remember where we were and go back,
or work on recognizing multiple tokens at the same time

• Example: comment begins with division sign,
so we should not decide on division token when checking for
comment

15

Skipping Comments

if (ch.current == ’/’) {

ch.next();

if (ch.current == ’/’) {

while (!isEOL && !isEOF) {

ch.next();

}

} else {

token.kind = DIV;

}

}

Question: how can we handle nested comments?

/* foo /* bar */ baz */

Answer: use a counter for nesting depth

16

Skipping Comments

if (ch.current == ’/’) {

ch.next();

if (ch.current == ’/’) {

while (!isEOL && !isEOF) {

ch.next();

}

} else {

token.kind = DIV;

}

}

Question: how can we handle nested comments?

/* foo /* bar */ baz */

Answer: use a counter for nesting depth

16

White Spaces

• Whitespace can be defined as a token using space character, tabs,
and various end-of-line characters

• In most languages (Java, ML, C) white spaces and comments can
occur between any two other tokens
• They have no meaning, so parser does not want to see them

• Convention: lexical analyzer removes those “tokens” from its output

• Lexical analyzer always finds the next non-whitespace non-comment
token

• What kind of applications care about the comments and white
spaces in source code?

17

