Compilers and
Formal Languages

Email: christian.urban at kcl.ac.uk
Slides & Progs: KEATS (also homework is there)

1 Introduction, Languages
2 Regular Expressions, Derivatives

4 Lexing, Tokenising

5 Grammars, Parsing

6 While-Language

7 Compilation, JVM

8 Compiling Functional Languages
9 Optimisations

10 LLVM

Scala Book, Exams

@ https://nms.kcl.ac.uk/christian.urban/ProgInScala2ed.pdf
@ homework (written exam 80%)
@ coursework (20%)

@ short survey at KEATS; to be answered until Sunday

(Basic) Regular Expressions

r u= 0 nothing
|1 empty string /" / ||
| ¢ character
| rnn sequence
| r+n alternative / choice
a star (zero or more)

How about ranges [a-z], r* and ~ r? Do they
increase the set of languages we can recognise?

Negation

Assume you have an alphabet consisting of the
letters a, b and c only. Find a (basic!) regular
expression that matches all strings except ab and ac!

Automata

A deterministic finite automaton, DFA, consists of:
an alphabet X
a set of states Qs
one of these states is the start state Q,
some states are accepting states F, and
there is transition function ¢
which takes a state as argument and a character and

produces a new state; this function might not be everywhere
defined = partial function

A(Zr QS/ QO/ F/ (S)

a a
start —(Qy —>(Q; ——> Q4 o a,b

N

bCQ2—>Q3

@ the start state can be an accepting state
@ itis possible that there is no accepting state

@ all states might be accepting (but this does not
necessarily mean all strings are accepted)

for this automaton ¢ is the function

(QOIC’> — Q (Qwa) — Q4 (Q4,a) — Q4

(Qo,b) = Q, (Qi,b) = Q, (Qub) — Q™

Accepting a String
Given
A(Z/ QSI QOI F/ 5)

you can define

Accepting a String
Given
A(Er QS/ QOI F/ 5)

you can define

0(a)=q

-~ -~

6(g,c:s) =6(8(g,¢),s)

Whether a string s is accepted by A?

-~

5(Q0/S> S F

Regular Languages

A language is a set of strings.
A regular expression specifies a language.

A language is regular iff there exists a regular
expression that recognises all its strings.

Regular Languages

A language is a set of strings.
A regular expression specifies a language.
A language is regular iff there exists a regular

expression that recognises all its strings.

not all languages are regular, e.g. a"b" is not

Regular Languages (2)
A language is regular iff there exists a regular
expression that recognises all its strings.
or equivalently

A language is regular iff there exists a deterministic
finite automaton that recognises all its strings.

Non-Deterministic
Finite Automata

A non-deterministic finite automaton (NFA) consists
again of:

@ afinite set of states

@ some these states are the start states

@ some states are accepting states, and

@ there s transition relation

(Q,a) = Q
(Qa) - Q ™

Non-Deterministic
Finite Automata

A non-deterministic finite automaton (NFA) consists
again of:

@ afinite set of states

@ some these states are the start states

@ some states are accepting states, and

@ there s transition relation

(Q,a) = Q

(Qa) > Q (Q,a9) = {Q,Q}

An NFA Example

Another Example

For the regular expression (.*)a (.{"})bc

*
Start... O~ *bc
- g y

n

Note the star-transitions: accept any character.

Two Epsilon NFA Examples

Rexp to NFA

Caseri-r

By recursion we are given two automata:

rq 5)

start © start _>O ©

Start PRy © PRy ©
start © start —>O ©

We need to (1) change the accepting nodes of the first
automaton into non-accepting nodes, and (2) connect them
via e-transitions to the starting state of the second
automaton.

Caseri-r

By recursion we are given two automata:

ri-r

start e ©
start o .. P ©
start - ©

We need to (1) change the accepting nodes of the first
automaton into non-accepting nodes, and (2) connect them
via e-transitions to the starting state of the second
automaton.

Caser1+nr

By recursion we are given two automata:
I

Ve

start —{) O

start —{) ®

A

rp

O
start o O
O

We can just put both automata together.

Caser1+nr

By recursion we are given two automata:
rq + ry

start —{) O

start —{) O

start —) -+ ()
\ O

We can just put both automata together.

Caser”™

By recursion we are given an automaton for r:

start —{) O

start —{) O

Caser”™

By recursion we are given an automaton for r:

Caser”™

By recursion we are given an automaton for r:

start

Why can'’t we just have an epsilon transition from
the accepting states to the starting state?

Subset Construction

nodes

{}

{o}
{1}
{2}
{o,1}
{0,2}
{1,2}
{0,1,2}

Subset Construction

nodes

{}

{o}
{1}
{2}
{o,1}
{0,2}
{1,2}
{0,1,2}

Subset Construction

nodes

a b
{} {r {}
{o} |{o0,1,2} {2}
{1} {1t {}
{2} {+ {2}
{o,1}
{0,2}
{1,2}
{0,1,2}

Subset Construction

nodes a b
{} {r {}
{o} |{o0,1,2} {2}
{1} {1t {}
{2} {+ {2}
{0,171} | {o,1,2} {2}
{0,2} |{o0,1,2} {2}
{1.2} | {1} {2}
{0,1,2} |{o0,1,2} {2}

Subset Construction

nodes a b

{} {r {}
{o} |{o0,1,2} {2}

{1} {1t {}
{2} {+ {2}
{0,171} | {o,1,2} {2}
{0,2}*]{0,1,2} {2}
{1.2}* {1} {2}
s:{0,1,2}* | {0,1,2} {2}

The Result

DFA:

Removing Dead States

(original) NFA:

Regexps and Automata

Thompson'’s subset
construction construction

Regexps mmlp NFAs =y DFAs

Regexps and Automata

Thompson'’s subset
construction construction

Regexps musp NFAs mufp DFAs mup mli)nFip:al

minimisation

DFA Minimisation

Take all pairs (g, p) withg # p
Mark all pairs that accepting and non-accepting
states

For all unmarked pairs (g, p) and all characters ¢
test whether

(6(q,¢),0(p,c))

are marked. If yes in at least one case, then also

mark (g, p).
Repeat last step until no change.

All unmarked pairs can be merged.

start —>{ Q, —> Q, —> Q4 ab

\jb fa

bCQ2_>Q3
b

Q

Q,

Q;

Qx| *x|*x]|x*

Q Q Q Q

start —{ Qg LN Q N Q4 oab

Q| x
N e fe NEE

bCQ2_>Q3 Q3* *
Qi x| **1*
> ONONeN R
ab

; ¢

= a
start —{ Qg Qs — Q4
S

U b

b

Alternatives

@ exchange initial / accepting states

Alternatiygs

start

@ exchange initial / accepting states

@ reverse all edges

Alternatiyegs

start

@ exchange initial / accepting states
@ reverse all edges
@ subset construction = DFA

Alternati\a/%s

start

exchange initial / accepting states
reverse all edges
subset construction = DFA

remove dead states

Alternati\a/%s

start

exchange initial / accepting states
reverse all edges

subset construction = DFA
remove dead states

repeat once more

Alternati\a/%s

start

exchange initial / accepting states
reverse all edges

subset construction = DFA
remove dead states

repeat once more = minimal DFA

Regexps and Automata

Thompson'’s subset
construction construction

Regexps é NFAs é DFAs é mli)nFi;al

minimisation

Regexps and Automata

Thompson'’s subset
construction construction

Regexps é NFAs é DFAs é mli)nFi;al

\/ minimisation

DFA to Rexp

a
o — @O T
b b

start

a
o — @D @

You know how to solve since school days, no?

Q =2Q+3Q, +4Q,
Q =2Q+3Q,+1Q,
Q =1Q+5Q,+2Q,

a
@S
b

b

a
o — @D~
b b
Q = Qb+Qib+Qyb+1

Qi = Qqa
Q, = Qa+Q,a

a
@D D
{] NG
b

b

Q = Qb+Qib+Qyb+1
Qi = Qqa
Q, = Qa+Q,a

Arden’s Lemma:

Ifg=qr—+s then g =sr"

Regexps and Automata

Thompson'’s subset
construction construction

Regexps é NFAs é DFAs é mli)nFi;al

\/ minimisation

Regular Languages (3)

A language is regular iff there exists a regular
expression that recognises all its strings.

or equivalently

A language is regular iff there exists a deterministic
finite automaton that recognises all its strings.

Regular Languages (3)

A language is regular iff there exists a regular
expression that recognises all its strings.

or equivalently

A language is regular iff there exists a deterministic
finite automaton that recognises all its strings.

Why is every finite set of strings a regular language?

Given the function

o
m
=

& g
0] [0
g e
6O - o

s
<
(@}
~— — — — ~— ~—
I

and the set

prove whether

L(rev(r))

Rev(L(r))

