Compilers and
Formal Languages

Email: christian.urban at kcl.ac.uk
Slides & Progs: KEATS

6 While-Language

2 Regular Expressions, Derivatives 7 Compilation, JVM
3 Automata, Regular Languages 8 Compiling Functional Languages
4 Lexing, Tokenising 9 Optimisations

5 Grammars, Parsing 10 LLVM

The Goal of this Module...

... you write a compiler

input binary
program code

lexer parser code gen

The Goal of this Module...

lexer input: a string

"read(n);"

lexer output: a sequence of tokens

inpl. key(read) lpar id(n) rpar semi J binary

program code

lexer parser code gen

The Goal of this Module...

p
lexer input: a string

"read(n);"

lexer output: a sequence of tokens

inpl_ key(read) lpar id(n) rpar semi) binary
program o

lexing = recognising words (Stone of Rosetta)

The Goal of this Module...

p
lexer input: a string

"read(n);"

lexer output: a sequence of tokens
key(read) lpar id(n) rpar semi

inp__
program

if = keyword
iffoo = identifier

lexing = recognising words (Stone of Rosetta)

The Goal of this Module...

... you write a compiler

input binary
program code

lexer parser code gen

inp
prd

Tlan — 2
parser input: a sequence of tokens

key(read) lpar id(n) rpar semi

parser output: an abstract syntax tree

read
lpar n rpar

R AL AL 4

binary
code

The Goal of this Module...

... you write a compiler

input binary
program code

lexer parser code gen

inp
prd

—ThoCaal af this Module...

code generation:

istore 2
iload 2
ldc 10 . .
isub yrite a compiler

ifeq Label2
iload 2 parser code gen

binary
code

inp
prd

ThoCaalafthis Module...

code generation:

istore 2
iload 2
1dc 10

isub rite a compiler

ifeq Label2
iload 2

parser

secs

400

300

200

100

0

i |

T T
0 200 400 600 800 1,000 1,200

n

inp
prg

The Goal of this Module...

4 '
Compiler explorers, e.g.: https://gcc.godbolt.org =

1 [square(int):
2 push rbp
3 mov rbp, rsp
4 mov DWORD PTR [rbp-4], edi
5 mov eax, DWORD PTR [rbp-4]

1 // Type your code here, or load an example. 6 and eax, 1

2 - int square(int num) { 7 test eax, eax

3 E if (num % 2 == 0) 8 jne .L2

4 { return num + num; } 9 mov eax, DWORD PTR [rbp-4]

5 [else 10 add eax, eax

6 | { return num * num; } 11 jmp .13

7} 12 = .L2:
13 mov eax, DWORD PTR [rbp-4]
14 imul eax, eax
15 = .L3
16 pop rbp
17 ret

source ——— bi
\ W,

https://gcc.godbolt.org
https://youtu.be/ysaBmhMEyUg

The Goal of this Module...

rCompiIer explorer for Java: https://javap.yawk.at

34 Code:
1- fimport java.util.*; 35 stack=1, locals=2, args_size=1
2 import lombok.*; 36 start local 0 // Main this
3 37 0: aload_0
inp | 4- public class Main { 38 1: invokespecial #1
5+ public Main() { 39 4: iconst 0
prc 6 inti-0: 40 5: istore_l)
L 5 41 start local 1 // int i
4 i+ 42 6: iinc 1,1
8 } 43 9: return
9 3} 44 end local 1 // int i
I 45 end local 0 // Main this

source —— byte code

https://javap.yawk.at

The Goal of this Module...

... you write a compiler

input binary
program code

lexer parser code gen

Why Study Compilers?

John Regehr (Univ. Utah, LLVM compiler hacker) £

“..It’s effectively a perpetual employment act for
solid compiler hackers.”

https://blog.regehr.org/archives/1419

Why Study Compilers?

John Regehr (Univ. Utah, LLVM compiler hacker) £

“..It’s effectively a perpetual employment act for
solid compiler hackers.”

@ Hardware is getting weirder rather than getting

clocked faster.
“Almost all processors are multicores nowadays and it
looks like there is increasing asymmetry in resources
across cores. Processors come with vector units, crypto
accelerators etc. We have DSPs, GPUs, ARM big little,
and Xeon Phi. This is only scratching the surface.”

https://blog.regehr.org/archives/1419

Why Study Compilers?

John Regehr (Univ. Utah, LLVM compiler hacker) £

“..It’s effectively a perpetual employment act for
solid compiler hackers.”

@ We're getting tired of low-level languages and

their associated security disasters.
“We want to write new code, to whatever extent
possible, in safer, higher-level languages. Compilers are
caught right in the middle of these opposing trends: one
of their main jobs is to help bridge the large and growing
gap between increasingly high-level languages and
increasingly wacky platforms.”

https://blog.regehr.org/archives/1419

Why Bother with Compilers?
Boeing 777’s: First flight in 1994. They want to
achieve triple redundancy for potential hardware

faults. »

They compile 1 Ada program to Y
OO0 ===

@ Intel 80486 o o

___i ___L _
@ Motorola 68040 (old Macintosh’s) i ;i = s
@ AMD 29050 (RISC chips used often in Iaser printers)

using 3 independent compilers.

http://www.citemaster.net/get/db3a81c6-548e-11e5-9d2e-00163e009cc7/R8.pdf

Why Bother with Compilers?
Boeing 777’s: First flight in 1994. They want to
achieve triple redundancy for potential hardware

faults. 7

They compile 1 Ada programto [z

|
\
\
|

1 | o

o Intel 80486 z i:‘:f%ifi;i LALAL I

@ Motorola 68040 (old Macintosh’s)
@ AMD 29050 (RISC chips used often in laser printers)

using 3 independent compilers.

Airbus uses C and static analysers. Recently started using
CompCert.

http://www.citemaster.net/get/db3a81c6-548e-11e5-9d2e-00163e009cc7/R8.pdf

What Do Compilers Do?

Remember BF*** from PEP?

+ A Vv

A 2 AR R

move one cell right
move one cell left
increase cell by one
decrease cell by one
print current cell
input current cell
loop begin

loop end

everything else is a comment

A “Compiler” for BF*** to C

ptr++

ptr--

(*ptr)++
(*ptr)--
putchar(*ptr)
*ptr = getchar()
while(*ptr){

}

ignore everything else

+ A Vv

R

Y

char field[30000]
char *ptr = &field[15000]

Another “Compiler” for BF to C

>
<..
+...

>
<
+

R R

Y

ptr += n

ptr -=n

(*ptr) +=n
(*ptr) -=n
putchar(*ptr)
*ptr = getchar()
while(*ptr){

}

ignore everything else

char field[30000]

char *ptr

&field[15000]

A Brief Compiler History

@ Turing Machines, 1936 (a tape as memory)
@ Regular Expressions, 1956

@ The first compiler for COBOL, 1957
(Grace Hopper)

@ But surprisingly research papers are still published
nowadays

@ “Parsing: The Solved Problem That Isn't” &>

Grace Hopper
(she made it to David Letterman’s Tonight Show K2?)

https://tratt.net/laurie/blog/entries/parsing_the_solved_problem_that_isnt.html
https://youtu.be/3N_ywhx6_K0?t=31

Some Housekeeping

Exams will be online:

e final exam in January (30%)
@ mid-term shortly after Reading Week (10%)

o weekly engagement (10%)

Some Housekeeping

Exams will be online:

e final exam in January (30%)
@ mid-term shortly after Reading Week (10%)

@ weekly engagement (10%)

Weekly Homework (optional):

@ uploaded on KEATS, send answers via email,
responded individually

@ all questions in the exam and mid-term will be from
the HW!!

Some Housekeeping

Coursework (5 accounting for 45%):

matcher (5%)

lexer (8%)

parser / interpreter (10%)
JVM compiler (10%)
LLVM compiler (12%)

Some Housekeeping

Coursework (5 accounting for 45%):

matcher (5%)

lexer (8%)

parser / interpreter (10%)
JVM compiler (10%)
LLVM compiler (12%)

you can use any programming language you like
(Haskell, Rust)

Some Housekeeping

Coursework (5 accounting for 45%):

matcher (5%)

lexer (8%)

parser / interpreter (10%)
JVM compiler (10%)
LLVM compiler (12%)

you can use any programming language you like
(Haskell, Rust)

you can use any code | showed you and uploaded to
KEATS...BUT NOTHING ELSE!

Some Housekeeping

Coursework (5 accounting for 45%):

matcher (5%)

lexer (8%)

parser / interpreter (10%)
JVM compiler (10%)
LLVM compiler (12%)

you can use any programming language you like
(Haskell, Rust)

you can use any code | showed you and uploaded to
KEATS...BUT NOTHING ELSE!

Lectures1-5

transforming strings into structured data

I.eXing based on regular expressions

(recognising “words”)

Parsing

(recognising “sentences”)

Stone of Rosetta

Lectures1-5

transforming strings into structured data

I.eXing based on regular expressions

(recognising “words”)

Parsing

(recognising “sentences”)

Stone of Rosetta

Lectures5-10

code generation for a small imperative and a small
functional language

Interpreters

(directly runs a program)

Compilers
(generate JVM code and LLVM-IR code)

Familiar Regular Expresssions
[a-20-9_\.-1+ @ [a-z0-9\.-1+ . [a-z\.]{2,6}

re*

re+

re?
re{n}
re{n,m}
[...]
[~...]
a-z A-Z
\d

(re)

matches 0 or more times

matches 1 or more times

matches 0 or 1 times

matches exactly n number of times

matches at least n and at most m times

matches any single character inside the brackets
matches any single character not inside the brackets
character ranges

matches digits; equivalent to [0-9]

matches every character except newline

groups regular expressions and remembers the
matched text

Some “innocent” examples

Let’s try two examples

(a*)*b [a?]{n}[a]l{n}

Some “innocent” examples

Let’s try two examples

(a*)*b [a?]{n}[a]{n}

and match them with strings of the form

d, da, daq, aadad, aaaaa, d...d

n

Why Bother with Regexes?

Ruby, Python, Java 8 Us (after next lecture)
[a?]{n}[a]{n}:
» 30 | —o—Python 9 30 ¢
g 25 g5 -
c £ 20
o o 151 |
£ E 0|7
=} R 5 1
Sesess OM)
5 10 15 20 25 30 " 0 5000 10,000
(a*)*b:
«» 30 {|—o—Python g
§ 25110 Java 8 Q
£ 207 —o— JavaScript £
[)) 15 1 ()]
£ 10 £
. . - S T
matching with 0 0 : : N
5 10 15 20 25 30 " 0 2.10° 4-10°

strings a...a
N

n

Incidents
@ aglobal outage on 2 July 2019 at Cloudflare (first

one for six years)
Ca2:\"]"INTI\FI\\|\d]| (?:nan|infinity|true|false]|
null|undefined|symbol|math) |\™ |\-|\+)+[)]1*;?((2:\s
=1~V ILEIN NN * 4 (20 x=0%)))

CLOUDFLARE’

It serves more web traffic than Twitter,
Amazon, Apple, Instagram, Bing &
Wikipedia combined.

@ on 20 July 2016 the Stack Exchange webpage went
down because of an evil regular expression >

https://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/

Evil Regular Expressions

Regular expression Denial of Service (ReDoS)
Some evil regular expressions:

[a?]{n} [a]{n}
(a*)*b
([a-z]+)*

(a + aa)*

(a + ar)*

@ sometimes also called catastrophic backtracking

this is a problem for Network Intrusion Detection
systems, Cloudflare, StackExchange, Atom editor

https://vimeo.com/112065252

https://vimeo.com/112065252

(Basic) Regular Expressions

Their inductive definition:

nothing

empty string / "" / []
character
alternative / choice
sequence

star (zero or more)

(Habstr‘act class Rexp

Thei case object ZERO extends Rexp
e case object ONE extends Rexp
case class CHAR(c: Char) extends Rexp
case class ALT(rl: Rexp, r2: Rexp) extends Rexp
case class SEQ(rl: Rexp, r2: Rexp) extends Rexp
case class STAR(r: Rexp) extends Rexp
"
r u= 0 nothing
|1 empty string / "" / []
e character
| r+n alternative / choice
| rnen sequence

r* star (zero or more)

Strings

...are lists of characters. For example "hello"
[h,e,1,1,0] orjust hello
the empty string: [| or ""
the concatenation of two strings:
51 @s,

foo @ bar = foobar
baz @ [| = baz

Languages, Strings

@ Strings are lists of characters, for example
[], abc (Pattern match: c::s)

@ A language is a set of strings, for example

{[], hello, foobar, a, abc}

@ Concatenation of strings and languages
foo @ bar = foobar

A@B = {5;,@s, | 5, €AAs, €B}

Languages, Strings

@ Strings are lists of characters, for example
[], abc (Pattern match: c::s)

@ A language is a set of strings, for example

Let
{(), hello, foobar, , abc} A = {foo, bar}
B = {al b}

@ Concatenation of strings and languages
foo @ bar = foobar

A@B = {5;,@s, | 5, €AAs, €B}

A@B = {fooa, foob, bara, barb }

Two Corner Cases

A@ (]} =7

Two Corner Cases

XHINE
A@{} =7

The Meaning of a Regex

..all the strings a regular expression can match.

o
o
o

Lo) = {}

L) = {[}

L(e) = {[c}
Lin+r) £ Ln)UL(n)
L(ri-r) = Lirn)@L(r,)

)

L(r

L is a function from regular expressions to sets of strings (languages):
L: Rexp = Set|[String]

The Power Operation

@ The nth Power of a language:

A= {l}
An—H d:ef A@A"
For example
At = AQRA@Q@AQ@A (@{[]})
Al = A (@{l]})
A = A}

The Meaning of a Regex

(=8
e

Lo) = {3
L) = {0}
L) = {[}
L(ri+r,) e L(r) UL(ry)
L(ri-1ry) & {s1@s, | sy € L(r1) Asy € L(r)}
L(rt) =

The Meaning of a Regex

o) = {}
L) = {0}
L) = {[}
Lin+r) = L(n)UL(n)
L(ri-1ry) & {s1@s, | sy € L(r1) Asy € L(r)}
L(r) = UoenL(r)"

The Star Operation

The Kleene Star of a language:

def

A* — UOSI’I /A,,7
This expands to

ACUATUAZUASUAYU...

or

{[} UAUA@RA U ARA@RA U ARGA@QRA@AU...

The Meaning of a Regex

(=8
e

Lo) = {3
L) = {0}
L) = {[}
Lin+r) = L(n)UL(n)
L(ri-1ry) & {s1@s, | sy € L(r1) Asy € L(r)}
Lr) = (L(r)*

The Meaning of Matching

A regular expression r matches a string s
provided

s e L(r)

N\

...and the point of the next lecture is to decide this
problem as fast as possible (unlike Python, Ruby,
Java)

Questions

o SayA = {[al, [b], [c], [d]}.

How many strings are in A4?

Questions

o SayA = {[al, [b], [c], [d]}.

How many strings are in A4?

Whatif A = {l[a], [b], [c],[] };
how many strings are then in A*?

Questions?

