
A Crash-Course on Scala
Scala is programming language that combines functional and object-oriented
programming-styles, and has received in the last five years quite a bit of atten-
tion. One reason for this attention is that, like the Java programming language,
it compiles to the Java Virtual Machine (JVM) and therefore can run under
MacOSX, Linux and Windows.1 Unlike Java, however, Scala often allows pro-
grammers to write concise and elegant code; some therefore say Scala is the
much better Java. If you want to try it out, the Scala compiler can be down-
loaded from

http://www.scala-lang.org

Why do I use Scala in the AFL course? Actually, you can do any part of the
programming coursework in any programming language you like. I use Scala for
showing you code during the lectures because its functional programming-style
allows me to implement some of the functions we will discuss with very small
and elegant code. Since the compiler is free, you can download it and run every
example I give. But if you prefer, you can also translate the examples into any
other functional language, for example Haskell, ML, F# and so on.

Writing programs in Scala can be done with the Eclipse IDE and also with
IntelliJ, but for the small programs we will look at the Emacs-editor id good
for me and I will run programs on the command line. One advantage of Scala
over Java is that it includes an interpreter (a REPL, or Read-Eval-Print-Loop)
with which you can run and test small code-snippets without the need of the
compiler. This helps a lot for interactively developing programs. Once you
installed Scala correctly, you can start the interpreter by typing

$ scala
Welcome to Scala version 2.11.2 (Java HotSpot(TM) 64-Bit Server VM).
Type in expressions to have them evaluated.
Type :help for more information.

scala>

The precise output may vary due to the platform where you installed Scala. At
the scala prompt you can type things like 2 + 3 Ret and the output will be

scala> 2 + 3
res0: Int = 5

indicating that the result of the addition is of type Int and the actual result is
5. Another example you can type in is

scala> print ("hello world")
hello world

1There are also experimental backends for Android and JavaScript.

1

http://www.scala-lang.org


which prints out a string. Note that in this case there is no result: the reason
is that print does not actually produce a result (there is no res_), rather
it is a function that causes the side-effect of printing out a string. Once you
are more familiar with the functional programming-style, you will know what
the difference is between a function that returns a result, like addition, and a
function that causes a side-effect, like print. We shall come back to this later,
but if you are curious, the latter kind of functions always have as return type
Unit.

Inductive Datatypes
The elegance and conciseness of Scala programs stems often from the fact that
inductive datatypes can be easily defined. For example in “every-day Mathe-
matics” we would define regular expressions simply by the grammar

r ::= ∅ null
| ϵ empty string
| c single character
| r1 · r2 sequence
| r1 + r2 alternative / choice
| r∗ star (zero or more)

This grammar specifies what regular expressions are (essentially a kind of tree-
structure with three kinds of inner nodes and three kinds of leave nodes). If you
are familiar with Java, it might be an instructive exercise to define this kind of
inductive datatypes in Java.2

Implementing the regular expressions from above in Scala is very simple:
It first requires an abstract class, say, Rexp. This will act as type for regular
expressions. Second, it requires some instances. The cases for ∅ and ϵ do not
have any arguments, while in the other cases we do have arguments. For example
the character regular expression needs to take as an argument the character it
is supposed to recognise. In Scala, the cases without arguments are called case
objects, while the ones with arguments are case classes. The corresponding code
is as follows:

1 abstract class Rexp
2 case object NULL extends Rexp
3 case object EMPTY extends Rexp
4 case class CHAR (c: Char) extends Rexp
5 case class SEQ (r1: Rexp, r2: Rexp) extends Rexp
6 case class ALT (r1: Rexp, r2: Rexp) extends Rexp
7 case class STAR (r: Rexp) extends Rexp

Given the grammar above, I hope you can see the underlying pattern. In order
to be an instance of Rexp, each case object or case class needs to extend Rexp.

2Happy programming! ;o)

2



If you want to play with such definitions, feel free to define for example binary
trees.

Once you make a definition like the one above, you can represent, say, the
regular expression for a + b as ALT(CHAR('a'), CHAR('b')). If you want to
assign this regular expression to a variable, you can just type

scala> val r = ALT(CHAR('a'), CHAR('b'))
r: ALT = ALT(CHAR(a),CHAR(b))

In order to make such assignments there is no constructor need in the class
(like in Java). However, if there is the need, you can of course define such a
constructor in Scala.

Note that Scala says the variable r is of type ALT, not Rexp. Scala always
tries to find the most general type that is needed for a variable, but does not
“over-generalise”. In this case there is no need to give r the more general type
of Rexp. This is different if you want to form a list of regular expressions, for
example

scala> val ls = List(ALT(CHAR('a'), CHAR('b')), NULL)
ls: List[Rexp] = List(ALT(CHAR(a),CHAR(b)), NULL)

In this case Scala needs to assign a type to the regular expressions, so that it
is compatible with the fact that list can only contain elements of a single type,
in this case this is Rexp.3 Note that if a type takes another type as argument,
this is written for example as List[Rexp].

Functions and Pattern-Matching
Types
Cool Stuff

3If you type in this example, you will notice that the type contains some further information,
but lets ignore this for the moment.

3


