
Compilers and
Formal Languages (3)

Email: christian.urban at kcl.ac.uk
Office: N7.07 (North Wing, Bush House)
Slides: KEATS (also homework and course-

work is there)

CFL 03, King’s College London – p. 1/43

Scala Book, Exams

https://nms.kcl.ac.uk/christian.urban/ProgInScala2ed.pdf
homework (written exam 80%)
coursework (20%)

short survey at KEATS; to be answered until
Sunday

CFL 03, King’s College London – p. 2/43

Regular Expressions
In programming languages they are often used to
recognise:

symbols, digits
identifiers
numbers (non-leading zeros)
keywords
comments

http://www.regexper.com

CFL 03, King’s College London – p. 3/43

http://www.regexper.com

LastWeek

Last week I showed you a regular expression
matcher that works provably correct in all cases
(we only started with the proving part though)

matches s r if and only if s ∈ L(r)

by Janusz Brzozowski (1964)

CFL 03, King’s College London – p. 4/43

TheDerivative of a Rexp
der c (0) def

= 0
der c (1) def

= 0
der c (d) def

= if c = d then 1 else 0
der c (r1 + r2)

def
= der c r1 + der c r2

der c (r1 · r2)
def
= if nullable(r1)

then (der c r1) · r2 + der c r2
else (der c r1) · r2

der c (r∗) def
= (der c r) · (r∗)

ders [] r def
= r

ders (c :: s) r def
= ders s (der c r)

CFL 03, King’s College London – p. 5/43

Example
Given r def

= ((a · b) + b)∗ what is

der a ((a · b) + b)∗ ⇒ der a ((a · b) + b)∗

= (der a ((a · b) + b)) · r
= ((der a (a · b)) + (der a b)) · r
= (((der a a) · b) + (der a b)) · r
= ((1 · b) + (der a b)) · r
= ((1 · b) + 0) · r

CFL 03, King’s College London – p. 6/43

Input: string abc and regular expression r
1 der a r
2 der b (der a r)
3 der c (der b (der a r))

4 finally check whether the last regular expression
can match the empty string

CFL 03, King’s College London – p. 7/43

Input: string abc and regular expression r
1 der a r
2 der b (der a r)
3 der c (der b (der a r))

4 finally check whether the last regular expression
can match the empty string

CFL 03, King’s College London – p. 7/43

Simplification

Given r def
= ((a · b) + b)∗ what is

((1 · b) + 0) · r ⇒ ((1 · b) + 0) · r

= (b+ 0) · r

= b · r

CFL 03, King’s College London – p. 8/43

We proved

nullable(r) if and only if [] ∈ L(r)

by induction on the regular expression r.

AnyQuestions?

CFL 03, King’s College London – p. 9/43

We proved

nullable(r) if and only if [] ∈ L(r)

by induction on the regular expression r.

AnyQuestions?

CFL 03, King’s College London – p. 9/43

We need to prove

L(der c r) = Der c (L(r))

also by induction on the regular expression r.

CFL 03, King’s College London – p. 10/43

Proofs about Rexps

P holds for 0, 1 and c

P holds for r1 + r2 under the assumption that P
already holds for r1 and r2.

P holds for r1 · r2 under the assumption that P
already holds for r1 and r2.

P holds for r∗ under the assumption that P
already holds for r.

CFL 03, King’s College London – p. 11/43

Proofs aboutNatural
Numbers and Strings

P holds for 0 and
P holds for n+ 1 under the assumption that P
already holds for n

P holds for [] and
P holds for c :: s under the assumption that P
already holds for s

CFL 03, King’s College London – p. 12/43

Regular Expressions
r ::= 0 nothing

| 1 empty string / ”” / []
| c character
| r1 · r2 sequence
| r1 + r2 alternative / choice
| r∗ star (zero or more)

How about ranges [a-z], r+ and ∼ r? Do they
increase the set of languages we can recognise?

CFL 03, King’s College London – p. 13/43

Negation ofRegularExpr’s

∼ r (everything that r cannot recognise)

L(∼ r) def
= UNIV− L(r)

nullable(∼ r) def
= not (nullable(r))

der c (∼ r) def
= ∼ (der c r)

Used often for recognising comments:

/ · ∗ · (∼ ([a-z]∗ · ∗ · / · [a-z]∗)) · ∗ · /

CFL 03, King’s College London – p. 14/43

Negation ofRegularExpr’s

∼ r (everything that r cannot recognise)

L(∼ r) def
= UNIV− L(r)

nullable(∼ r) def
= not (nullable(r))

der c (∼ r) def
= ∼ (der c r)

Used often for recognising comments:

/ · ∗ · (∼ ([a-z]∗ · ∗ · / · [a-z]∗)) · ∗ · /

CFL 03, King’s College London – p. 14/43

Negation

Assume you have an alphabet consisting of the
letters a, b and c only. Find a (basic!) regular
expression that matches all strings except ab and ac!

CFL 03, King’s College London – p. 15/43

Automata
A deterministic finite automaton, DFA,
consists of:
an alphabet Σ

a set of states Q
one of these states is the start state Q0
some states are accepting states F, and
there is transition function δ

which takes a state as argument and a character and
produces a new state; this function might not be
everywhere defined⇒ partial function

A(Σ,Q,Q0,F, δ)

CFL 03, King’s College London – p. 16/43

Q0start Q1

Q2 Q3

Q4
a a a, b

a
a

b
b

b

b

the start state can be an accepting state
it is possible that there is no accepting state
all states might be accepting (but this does not
necessarily mean all strings are accepted)

CFL 03, King’s College London – p. 17/43

Q0start Q1

Q2 Q3

Q4
a a a, b

a
a

b
b

b

b

for this automaton δ is the function

(Q0, a) → Q1 (Q1, a) → Q4 (Q4, a) → Q4
(Q0, b) → Q2 (Q1, b) → Q2 (Q4, b) → Q4

…

CFL 03, King’s College London – p. 18/43

Accepting a String
Given

A(Σ,Q,Q0,F, δ)

you can define

δ̂(q, []) def
= q

δ̂(q, c :: s) def
= δ̂(δ(q, c), s)

Whether a string s is accepted by A?

δ̂(Q0, s) ∈ F

CFL 03, King’s College London – p. 19/43

Accepting a String
Given

A(Σ,Q,Q0,F, δ)

you can define

δ̂(q, []) def
= q

δ̂(q, c :: s) def
= δ̂(δ(q, c), s)

Whether a string s is accepted by A?

δ̂(Q0, s) ∈ F

CFL 03, King’s College London – p. 19/43

Regular Languages

A language is a set of strings.

A regular expression specifies a language.

A language is regular iff there exists a regular
expression that recognises all its strings.

not all languages are regular, e.g. anbn is not

CFL 03, King’s College London – p. 20/43

Regular Languages

A language is a set of strings.

A regular expression specifies a language.

A language is regular iff there exists a regular
expression that recognises all its strings.

not all languages are regular, e.g. anbn is not

CFL 03, King’s College London – p. 20/43

Regular Languages (2)

A language is regular iff there exists a regular
expression that recognises all its strings.

or equivalently

A language is regular iff there exists a
deterministic finite automaton that recognises all
its strings.

CFL 03, King’s College London – p. 21/43

Non-Deterministic
Finite Automata

A non-deterministic finite automaton (NFA)
consists again of:
a finite set of states
some these states are the start states
some states are accepting states, and
there is transition relation

(Q1, a) → Q2
(Q1, a) → Q3

…

(Q1, a) → {Q2,Q3}

CFL 03, King’s College London – p. 22/43

Non-Deterministic
Finite Automata

A non-deterministic finite automaton (NFA)
consists again of:
a finite set of states
some these states are the start states
some states are accepting states, and
there is transition relation

(Q1, a) → Q2
(Q1, a) → Q3

… (Q1, a) → {Q2,Q3}

CFL 03, King’s College London – p. 22/43

AnNFAExample

Q0start Q1 Q2

b

b

a

a

a, b

a

CFL 03, King’s College London – p. 23/43

TwoEpsilonNFA
Examples

q0start

q1

q2

ϵ

ϵ

a

a

b

r1start

r2

r3
b

a
ϵ a

CFL 03, King’s College London – p. 24/43

Rexp toNFA

0 start

1 start

c start c

CFL 03, King’s College London – p. 25/43

Case r1 · r2
By recursion we are given two automata:

r1 r2

start
start

start
. . .

start

start
. . .

We need to (1) change the accepting nodes of the first
automaton into non-accepting nodes, and (2) connect them
via ϵ-transitions to the starting state of the second
automaton.

CFL 03, King’s College London – p. 26/43

Case r1 · r2
By recursion we are given two automata:

r1 · r2

start
start

start
.

ϵs

ϵs

We need to (1) change the accepting nodes of the first
automaton into non-accepting nodes, and (2) connect them
via ϵ-transitions to the starting state of the second
automaton.

CFL 03, King’s College London – p. 26/43

Case r1+ r2
By recursion we are given two automata:

r1

r2

start

start

start

. . .

. . .

We can just put both automata together.

CFL 03, King’s College London – p. 27/43

Case r1+ r2
By recursion we are given two automata:

r1 + r2
start

start

start

. . .

. . .

We can just put both automata together.
CFL 03, King’s College London – p. 27/43

Case r∗

By recursion we are given an automaton for r:

r

start

start
. . .

Why can’t we just have an epsilon transition from
the accepting states to the starting state?

CFL 03, King’s College London – p. 28/43

Case r∗
By recursion we are given an automaton for r:

r∗

start . . .ϵ
ϵ

ϵ

ϵ

ϵ

Why can’t we just have an epsilon transition from
the accepting states to the starting state?

CFL 03, King’s College London – p. 28/43

Case r∗
By recursion we are given an automaton for r:

r∗

start . . .ϵ
ϵ

ϵ

ϵ

ϵ

Why can’t we just have an epsilon transition from
the accepting states to the starting state?

CFL 03, King’s College London – p. 28/43

Subset Construction

CFL 03, King’s College London – p. 29/43

Q0start

Q1

Q2

ϵ

ϵ

a

a

b

nodes * a b
{} *

{} {}

{0} *

{0, 1, 2} {2}

{1} *

{1} {}

{2}

* {} {2}

{0, 1} *

{0, 1, 2} {2}

{0, 2}

* {0, 1, 2} {2}

{1, 2}

* {1} {2}
s:

{0, 1, 2}

* {0, 1, 2} {2}

Subset Construction

CFL 03, King’s College London – p. 29/43

Q0start

Q1

Q2

ϵ

ϵ

a

a

b

nodes * a b
{} * {} {}

{0} *

{0, 1, 2} {2}

{1} *

{1} {}

{2}

* {} {2}

{0, 1} *

{0, 1, 2} {2}

{0, 2}

* {0, 1, 2} {2}

{1, 2}

* {1} {2}
s:

{0, 1, 2}

* {0, 1, 2} {2}

Subset Construction

CFL 03, King’s College London – p. 29/43

Q0start

Q1

Q2

ϵ

ϵ

a

a

b

nodes * a b
{} * {} {}

{0} * {0, 1, 2} {2}
{1} * {1} {}
{2}

*

{} {2}
{0, 1} *

{0, 1, 2} {2}

{0, 2}

* {0, 1, 2} {2}

{1, 2}

* {1} {2}
s:

{0, 1, 2}

* {0, 1, 2} {2}

Subset Construction

CFL 03, King’s College London – p. 29/43

Q0start

Q1

Q2

ϵ

ϵ

a

a

b

nodes * a b
{} * {} {}

{0} * {0, 1, 2} {2}
{1} * {1} {}
{2}

*

{} {2}
{0, 1} * {0, 1, 2} {2}
{0, 2}

*

{0, 1, 2} {2}
{1, 2}

*

{1} {2}

s:

{0, 1, 2}

*

{0, 1, 2} {2}

Subset Construction

CFL 03, King’s College London – p. 29/43

Q0start

Q1

Q2

ϵ

ϵ

a

a

b

nodes * a b
{} * {} {}

{0} * {0, 1, 2} {2}
{1} * {1} {}
{2} * {} {2}

{0, 1} * {0, 1, 2} {2}
{0, 2} * {0, 1, 2} {2}
{1, 2} * {1} {2}

s: {0, 1, 2} * {0, 1, 2} {2}

TheResult

{0, 1, 2}start {0, 2}

{0, 1}

{1, 2}

{0}

{1}

{2}

{}

a

b a

b

a

b

a
b

a b
a

b

b

a

a, b

CFL 03, King’s College London – p. 30/43

RemovingDead States
DFA: (original) NFA:

{0, 1, 2}start {2} {}

a

b

b

a

a, b

Q0start

Q1

Q2

ϵ

ϵ

a

a

b

CFL 03, King’s College London – p. 31/43

Regexps andAutomata

Regexps NFAs DFAs

minimal
DFAs

Thompson’s
construction

subset
construction

minimisation

CFL 03, King’s College London – p. 32/43

Regexps andAutomata

Regexps NFAs DFAs
minimal
DFAs

Thompson’s
construction

subset
construction

minimisation

CFL 03, King’s College London – p. 32/43

DFAMinimisation
1 Take all pairs (q, p) with q ̸= p
2 Mark all pairs that accepting and non-accepting
states

3 For all unmarked pairs (q, p) and all characters c
test whether

(δ(q, c), δ(p, c))
are marked. If yes in at least one case, then also
mark (q, p).

4 Repeat last step until no change.
5 All unmarked pairs can be merged.

CFL 03, King’s College London – p. 33/43

Q0start Q1

Q2 Q3

Q4
a a a, b

a
a

b
b

b

b

Q0 Q1 Q2 Q3

Q1

Q2

Q3

Q4 ⋆ ⋆ ⋆ ⋆

CFL 03, King’s College London – p. 34/43

Q0start Q1

Q2 Q3

Q4
a a a, b

a
a

b
b

b

b Q0Q1Q2Q3

Q1
Q2
Q3
Q4 ⋆ ⋆ ⋆ ⋆

⋆ ⋆

⋆
⋆

Q0,2start Q1,3 Q4

a

b

b

a

a, b

minimal automaton
CFL 03, King’s College London – p. 35/43

Alternatives

Q0start Q1

Q2 Q3

Q4
a a

a, b

a
a

b
b

b

b

exchange initial / accepting states
reverse all edges
subset construction⇒ DFA
remove dead states
repeat once more

⇒ minimal DFA

CFL 03, King’s College London – p. 36/43

Alternatives

Q0 Q1

Q2 Q3

Q4 starta a

a, b

a
a

b
b

b

b
exchange initial / accepting states

reverse all edges
subset construction⇒ DFA
remove dead states
repeat once more

⇒ minimal DFA

CFL 03, King’s College London – p. 36/43

Alternatives

Q0 Q1

Q2 Q3

Q4 starta a

a, b

a
a

b
b

b

b
exchange initial / accepting states
reverse all edges

subset construction⇒ DFA
remove dead states
repeat once more

⇒ minimal DFA

CFL 03, King’s College London – p. 36/43

Alternatives

Q0 Q1

Q2 Q3

Q4 starta a

a, b

a
a

b
b

b

b
exchange initial / accepting states
reverse all edges
subset construction⇒ DFA

remove dead states
repeat once more

⇒ minimal DFA

CFL 03, King’s College London – p. 36/43

Alternatives

Q0 Q1

Q2 Q3

Q4 starta a

a, b

a
a

b
b

b

b
exchange initial / accepting states
reverse all edges
subset construction⇒ DFA
remove dead states

repeat once more

⇒ minimal DFA

CFL 03, King’s College London – p. 36/43

Alternatives

Q0 Q1

Q2 Q3

Q4 starta a

a, b

a
a

b
b

b

b
exchange initial / accepting states
reverse all edges
subset construction⇒ DFA
remove dead states
repeat once more⇒ minimal DFA

CFL 03, King’s College London – p. 36/43

Regexps andAutomata

Regexps NFAs DFAs
minimal
DFAs

Thompson’s
construction

subset
construction

minimisation

CFL 03, King’s College London – p. 37/43

Regexps andAutomata

Regexps NFAs DFAs
minimal
DFAs

Thompson’s
construction

subset
construction

minimisation

CFL 03, King’s College London – p. 37/43

DFA toRexp

Q0start Q1 Q2

a

b

b

a a

b

How to get from a DFA to a regular expression?

CFL 03, King’s College London – p. 38/43

Q0start Q1 Q2

a

b

b

a a

b

You know how to solve since school days, no?

Q0 = 2Q0 + 3Q1 + 4Q2
Q1 = 2Q0 + 3Q1 + 1Q2
Q2 = 1Q0 + 5Q1 + 2Q2

CFL 03, King’s College London – p. 39/43

Q0start Q1 Q2

a

b

b

a a

b

You know how to solve since school days, no?

Q0 = 2Q0 + 3Q1 + 4Q2
Q1 = 2Q0 + 3Q1 + 1Q2
Q2 = 1Q0 + 5Q1 + 2Q2

CFL 03, King’s College London – p. 39/43

Q0start Q1 Q2

a

b

b

a a

b

Q0 = 1+Q0 b+Q1 b+Q2 b
Q1 = Q0 a
Q2 = Q1 a+Q2 a

Arden’s Lemma:

If q = q r+ s then q = s r∗

CFL 03, King’s College London – p. 40/43

Q0start Q1 Q2

a

b

b

a a

b

Q0 = 1+Q0 b+Q1 b+Q2 b
Q1 = Q0 a
Q2 = Q1 a+Q2 a

Arden’s Lemma:

If q = q r+ s then q = s r∗

CFL 03, King’s College London – p. 40/43

Q0start Q1 Q2

a

b

b

a a

b

Q0 = 1+Q0 b+Q1 b+Q2 b
Q1 = Q0 a
Q2 = Q1 a+Q2 a

Arden’s Lemma:

If q = q r+ s then q = s r∗

CFL 03, King’s College London – p. 40/43

Regexps andAutomata

Regexps NFAs DFAs
minimal
DFAs

Thompson’s
construction

subset
construction

minimisation

CFL 03, King’s College London – p. 41/43

Regular Languages (3)
A language is regular iff there exists a regular
expression that recognises all its strings.

or equivalently

A language is regular iff there exists a
deterministic finite automaton that recognises all
its strings.

Why is every finite set of strings a regular
language?

CFL 03, King’s College London – p. 42/43

Regular Languages (3)
A language is regular iff there exists a regular
expression that recognises all its strings.

or equivalently

A language is regular iff there exists a
deterministic finite automaton that recognises all
its strings.

Why is every finite set of strings a regular
language?

CFL 03, King’s College London – p. 42/43

Given the function

rev(0) def
= 0

rev(1) def
= 1

rev(c) def
= c

rev(r1 + r2)
def
= rev(r1) + rev(r2)

rev(r1 · r2)
def
= rev(r2) · rev(r1)

rev(r∗) def
= rev(r)∗

and the set

RevA def
= {s−1 | s ∈ A}

prove whether

L(rev(r)) = Rev(L(r))
CFL 03, King’s College London – p. 43/43

