
Compilers and
Formal Languages (3)

Email: christian.urban at kcl.ac.uk
Office: N7.07 (North Wing, Bush House)
Slides: KEATS (also homework and course-

work is there)
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Scala Book, Exams

https://nms.kcl.ac.uk/christian.urban/ProgInScala2ed.pdf
homework (written exam 80%)
coursework (20%)

short survey at KEATS; to be answered until
Sunday
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Regular Expressions
In programming languages they are often used to
recognise:

symbols, digits
identifiers
numbers (non-leading zeros)
keywords
comments

http://www.regexper.com
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LastWeek

Last week I showed you a regular expression
matcher that works provably correct in all cases
(we only started with the proving part though)

matches s r if and only if s ∈ L(r)

by Janusz Brzozowski (1964)
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TheDerivative of a Rexp
der c (0) def

= 0
der c (1) def

= 0
der c (d) def

= if c = d then 1 else 0
der c (r1 + r2)

def
= der c r1 + der c r2

der c (r1 · r2)
def
= if nullable(r1)

then (der c r1) · r2 + der c r2
else (der c r1) · r2

der c (r∗) def
= (der c r) · (r∗)

ders [] r def
= r

ders (c :: s) r def
= ders s (der c r)
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Example
Given r def

= ((a · b) + b)∗ what is

der a ((a · b) + b)∗ ⇒ der a ((a · b) + b)∗

= (der a ((a · b) + b)) · r
= ((der a (a · b)) + (der a b)) · r
= (((der a a) · b) + (der a b)) · r
= ((1 · b) + (der a b)) · r
= ((1 · b) + 0) · r
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Input: string abc and regular expression r
1 der a r
2 der b (der a r)
3 der c (der b (der a r))

4 finally check whether the last regular expression
can match the empty string
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Simplification

Given r def
= ((a · b) + b)∗ what is

((1 · b) + 0) · r ⇒ ((1 · b) + 0) · r

= (b+ 0) · r

= b · r
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We proved

nullable(r) if and only if [] ∈ L(r)

by induction on the regular expression r.

AnyQuestions?
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We need to prove

L(der c r) = Der c (L(r))

also by induction on the regular expression r.
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Proofs about Rexps

P holds for 0, 1 and c

P holds for r1 + r2 under the assumption that P
already holds for r1 and r2.

P holds for r1 · r2 under the assumption that P
already holds for r1 and r2.

P holds for r∗ under the assumption that P
already holds for r.
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Proofs aboutNatural
Numbers and Strings

P holds for 0 and
P holds for n+ 1 under the assumption that P
already holds for n

P holds for [] and
P holds for c :: s under the assumption that P
already holds for s
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Regular Expressions
r ::= 0 nothing

| 1 empty string / ”” / []
| c character
| r1 · r2 sequence
| r1 + r2 alternative / choice
| r∗ star (zero or more)

How about ranges [a-z], r+ and ∼ r? Do they
increase the set of languages we can recognise?
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Negation ofRegularExpr’s

∼ r (everything that r cannot recognise)

L(∼ r) def
= UNIV− L(r)

nullable(∼ r) def
= not (nullable(r))

der c (∼ r) def
= ∼ (der c r)

Used often for recognising comments:

/ · ∗ · (∼ ([a-z]∗ · ∗ · / · [a-z]∗)) · ∗ · /

CFL 03, King’s College London – p. 14/43



Negation ofRegularExpr’s

∼ r (everything that r cannot recognise)

L(∼ r) def
= UNIV− L(r)

nullable(∼ r) def
= not (nullable(r))

der c (∼ r) def
= ∼ (der c r)

Used often for recognising comments:

/ · ∗ · (∼ ([a-z]∗ · ∗ · / · [a-z]∗)) · ∗ · /

CFL 03, King’s College London – p. 14/43



Negation

Assume you have an alphabet consisting of the
letters a, b and c only. Find a (basic!) regular
expression that matches all strings except ab and ac!
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Automata
A deterministic finite automaton, DFA,
consists of:
an alphabet Σ

a set of states Q
one of these states is the start state Q0
some states are accepting states F, and
there is transition function δ

which takes a state as argument and a character and
produces a new state; this function might not be
everywhere defined⇒ partial function

A(Σ,Q,Q0,F, δ)
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Q0start Q1

Q2 Q3

Q4
a a a, b

a
a

b
b

b

b

the start state can be an accepting state
it is possible that there is no accepting state
all states might be accepting (but this does not
necessarily mean all strings are accepted)
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Q0start Q1

Q2 Q3

Q4
a a a, b

a
a

b
b

b

b

for this automaton δ is the function

(Q0, a) → Q1 (Q1, a) → Q4 (Q4, a) → Q4
(Q0, b) → Q2 (Q1, b) → Q2 (Q4, b) → Q4

…
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Accepting a String
Given

A(Σ,Q,Q0,F, δ)

you can define

δ̂(q, []) def
= q

δ̂(q, c :: s) def
= δ̂(δ(q, c), s)

Whether a string s is accepted by A?

δ̂(Q0, s) ∈ F
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Regular Languages

A language is a set of strings.

A regular expression specifies a language.

A language is regular iff there exists a regular
expression that recognises all its strings.

not all languages are regular, e.g. anbn is not
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Regular Languages (2)

A language is regular iff there exists a regular
expression that recognises all its strings.

or equivalently

A language is regular iff there exists a
deterministic finite automaton that recognises all
its strings.
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Non-Deterministic
Finite Automata

A non-deterministic finite automaton (NFA)
consists again of:
a finite set of states
some these states are the start states
some states are accepting states, and
there is transition relation

(Q1, a) → Q2
(Q1, a) → Q3

…

(Q1, a) → {Q2,Q3}

CFL 03, King’s College London – p. 22/43



Non-Deterministic
Finite Automata

A non-deterministic finite automaton (NFA)
consists again of:
a finite set of states
some these states are the start states
some states are accepting states, and
there is transition relation

(Q1, a) → Q2
(Q1, a) → Q3

… (Q1, a) → {Q2,Q3}

CFL 03, King’s College London – p. 22/43



AnNFAExample

Q0start Q1 Q2

b

b

a

a

a, b

a

CFL 03, King’s College London – p. 23/43



TwoEpsilonNFA
Examples

q0start

q1

q2

ϵ

ϵ

a

a

b

r1start

r2

r3
b

a
ϵ a
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Rexp toNFA

0 start

1 start

c start c
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Case r1 · r2
By recursion we are given two automata:

r1 r2

start
start

start
. . .

start

start
. . .

We need to (1) change the accepting nodes of the first
automaton into non-accepting nodes, and (2) connect them
via ϵ-transitions to the starting state of the second
automaton.
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Case r1 · r2
By recursion we are given two automata:

r1 · r2

start
start

start
. . . . . .

ϵs

ϵs

We need to (1) change the accepting nodes of the first
automaton into non-accepting nodes, and (2) connect them
via ϵ-transitions to the starting state of the second
automaton.
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Case r1+ r2
By recursion we are given two automata:

r1

r2

start

start

start

. . .

. . .

We can just put both automata together.
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Case r∗

By recursion we are given an automaton for r:

r

start

start
. . .

Why can’t we just have an epsilon transition from
the accepting states to the starting state?
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Subset Construction
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Q0start

Q1

Q2

ϵ

ϵ

a

a

b

nodes * a b
{} *

{} {}

{0} *

{0, 1, 2} {2}

{1} *

{1} {}

{2}

* {} {2}

{0, 1} *

{0, 1, 2} {2}

{0, 2}

* {0, 1, 2} {2}

{1, 2}

* {1} {2}
s:

{0, 1, 2}

* {0, 1, 2} {2}
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Subset Construction

CFL 03, King’s College London – p. 29/43

Q0start

Q1

Q2

ϵ
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Subset Construction
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Q0start

Q1

Q2

ϵ

ϵ

a

a

b

nodes * a b
{} * {} {}

{0} * {0, 1, 2} {2}
{1} * {1} {}
{2} * {} {2}

{0, 1} * {0, 1, 2} {2}
{0, 2} * {0, 1, 2} {2}
{1, 2} * {1} {2}

s: {0, 1, 2} * {0, 1, 2} {2}



TheResult

{0, 1, 2}start {0, 2}

{0, 1}

{1, 2}

{0}

{1}

{2}

{}

a

b a

b

a

b

a
b

a b
a

b

b

a

a, b
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RemovingDead States
DFA: (original) NFA:

{0, 1, 2}start {2} {}

a

b

b

a

a, b

Q0start

Q1

Q2

ϵ

ϵ

a

a

b
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Regexps andAutomata

Regexps NFAs DFAs

minimal
DFAs

Thompson’s
construction

subset
construction

minimisation
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DFAMinimisation
1 Take all pairs (q, p) with q ̸= p
2 Mark all pairs that accepting and non-accepting
states

3 For all unmarked pairs (q, p) and all characters c
test whether

(δ(q, c), δ(p, c))
are marked. If yes in at least one case, then also
mark (q, p).

4 Repeat last step until no change.
5 All unmarked pairs can be merged.
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Q0start Q1

Q2 Q3

Q4
a a a, b

a
a

b
b

b

b

Q0 Q1 Q2 Q3

Q1

Q2

Q3

Q4 ⋆ ⋆ ⋆ ⋆
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Q0start Q1

Q2 Q3

Q4
a a a, b

a
a

b
b

b

b Q0Q1Q2Q3

Q1
Q2
Q3
Q4 ⋆ ⋆ ⋆ ⋆

⋆ ⋆

⋆
⋆

Q0,2start Q1,3 Q4

a

b

b

a

a, b

minimal automaton
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Alternatives

Q0start Q1

Q2 Q3

Q4
a a

a, b

a
a

b
b

b

b

exchange initial / accepting states
reverse all edges
subset construction⇒ DFA
remove dead states
repeat once more

⇒ minimal DFA
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DFA toRexp

Q0start Q1 Q2

a

b

b

a a

b

How to get from a DFA to a regular expression?
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Q0start Q1 Q2

a

b

b

a a

b

You know how to solve since school days, no?

Q0 = 2Q0 + 3Q1 + 4Q2
Q1 = 2Q0 + 3Q1 + 1Q2
Q2 = 1Q0 + 5Q1 + 2Q2
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a a
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Q0start Q1 Q2

a

b

b

a a

b

Q0 = 1+Q0 b+Q1 b+Q2 b
Q1 = Q0 a
Q2 = Q1 a+Q2 a

Arden’s Lemma:

If q = q r+ s then q = s r∗
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Regexps andAutomata

Regexps NFAs DFAs
minimal
DFAs

Thompson’s
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Regular Languages (3)
A language is regular iff there exists a regular
expression that recognises all its strings.

or equivalently

A language is regular iff there exists a
deterministic finite automaton that recognises all
its strings.

Why is every finite set of strings a regular
language?
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Given the function

rev(0) def
= 0

rev(1) def
= 1

rev(c) def
= c

rev(r1 + r2)
def
= rev(r1) + rev(r2)

rev(r1 · r2)
def
= rev(r2) · rev(r1)

rev(r∗) def
= rev(r)∗

and the set

RevA def
= {s−1 | s ∈ A}

prove whether

L(rev(r)) = Rev(L(r))
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