Proof

Recall the definitions for regular expressions and the language associated with a regular expression:

We also defined the notion of a derivative of a regular expression (the derivative with respect to a character):

$$der c (\mathbf{0}) \qquad \stackrel{\text{def}}{=} \qquad \mathbf{0}$$

$$der c (\mathbf{1}) \qquad \stackrel{\text{def}}{=} \qquad \mathbf{0}$$

$$der c (d) \qquad \stackrel{\text{def}}{=} \qquad \text{if } c = d \text{ then } \mathbf{1} \text{ else } \mathbf{0}$$

$$der c (r_1 + r_2) \qquad \stackrel{\text{def}}{=} \qquad (der c r_1) + (der c r_2)$$

$$der c (r_1 \cdot r_2) \qquad \stackrel{\text{def}}{=} \qquad if nullable(r_1)$$

$$\qquad \qquad \text{then } ((der c r_1) \cdot r_2) + (der c r_2)$$

$$\qquad \qquad \text{else } (der c r_1) \cdot r_2$$

$$der c (r^*) \qquad \stackrel{\text{def}}{=} \qquad (der c r) \cdot (r^*)$$

With our definition of regular expressions comes an induction principle. Given a property P over regular expressions. We can establish that $\forall r. \ P(r)$ holds, provided we can show the following:

- 1. $P(\mathbf{0})$, $P(\mathbf{1})$ and P(c) all hold,
- 2. $P(r_1 + r_2)$ holds under the induction hypotheses that $P(r_1)$ and $P(r_2)$ hold.
- 3. $P(r_1 \cdot r_2)$ holds under the induction hypotheses that $P(r_1)$ and $P(r_2)$ hold, and
- 4. $P(r^*)$ holds under the induction hypothesis that P(r) holds.

Let us try out an induction proof. Recall the definition

$$Der c A \stackrel{\text{def}}{=} \{s \mid c :: s \in A\}$$

whereby A is a set of strings. We like to prove

$$P(r) \stackrel{\text{def}}{=} L(der \, c \, r) = Der \, c \, (L(r))$$

by induction over the regular expression r.

Proof

According to 1. above we need to prove $P(\mathbf{0})$, $P(\mathbf{1})$ and P(d). Lets do this in turn

- First Case: $P(\mathbf{0})$ is $L(der c \mathbf{0}) = Der c(L(\mathbf{0}))$ (a). We have $der c \mathbf{0} = \mathbf{0}$ and $L(\mathbf{0}) = \mathbf{0}$. We also have $Der c \mathbf{0} = \mathbf{0}$. Hence we have $\mathbf{0} = \mathbf{0}$ in (a).
- Second Case: $P(\mathbf{1})$ is $L(der c \mathbf{1}) = Der c (L(\mathbf{1}))$ (b). We have $der c \mathbf{1} = \mathbf{0}$, $L(\mathbf{0}) = \mathbf{0}$ and $L(\mathbf{1}) = \{""\}$. We also have $Der c \{""\} = \mathbf{0}$. Hence we have $\mathbf{0} = \mathbf{0}$ in (b).
- Third Case: P(d) is L(der c d) = Der c(L(d)) (c). We need to treat the cases d = c and $d \neq c$.

```
d = c: We have der\ c\ c = 1 and L(1) = \{""\}. We also have L(c) = \{"c"\} and Der\ c\ \{"c"\} = \{""\}. Hence we have \{""\} = \{""\} in (c).
```

 $d \neq c$: We have der c d = 0. We also have $Der c \{ "d" \} = 0$. Hence we have 0 = 0 in (c).

These were the easy base cases. Now come the inductive cases.

• Fourth Case: $P(r_1 + r_2)$ is $L(der c (r_1 + r_2)) = Der c (L(r_1 + r_2))$ (d). This is what we have to show. We can assume already:

$$P(r_1)$$
: $L(der c r_1) = Der c (L(r_1))$ (I)
 $P(r_2)$: $L(der c r_2) = Der c (L(r_2))$ (II)

We have that $der c (r_1 + r_2) = (der c r_1) + (der c r_2)$ and also $L((der c r_1) + (der c r_2)) = L(der c r_1) \cup L(der c r_2)$. By (I) and (II) we know that the left-hand side is $Der c (L(r_1)) \cup Der c (L(r_2))$. You need to ponder a bit, but you should see that

$$Der c(A \cup B) = (Der c A) \cup (Der c B)$$

holds for every set of strings A and B. That means the right-hand side of (d) is also $Der\ c\ (L(r_1)) \cup Der\ c\ (L(r_2))$, because $L(r_1+r_2) = L(r_1) \cup L(r_2)$. And we are done with the fourth case.

• Fifth Case: $P(r_1 \cdot r_2)$ is $L(der c (r_1 \cdot r_2)) = Der c (L(r_1 \cdot r_2))$ (e). We can assume already:

$$P(r_1)$$
: $L(der c r_1) = Der c (L(r_1))$ (I)
 $P(r_2)$: $L(der c r_2) = Der c (L(r_2))$ (II)

Let us first consider the case where $nullable(r_1)$ holds. Then

$$der c (r_1 \cdot r_2) = ((der c r_1) \cdot r_2) + (der c r_2).$$

The corresponding language of the right-hand side is

$$(L(der c r_1) @ L(r_2)) \cup L(der c r_2).$$

By the induction hypotheses (I) and (II), this is equal to

$$(Der c (L(r_1)) @ L(r_2)) \cup (Der c (L(r_2)). (**)$$

We also know that $L(r_1 \cdot r_2) = L(r_1) @ L(r_2)$. We have to know what $Der c(L(r_1) @ L(r_2))$ is.

Let us analyse what Der c (A @ B) is for arbitrary sets of strings A and B. If A does not contain the empty string, then every string in A @ B is of the form $s_1 @ s_2$ where $s_1 \in A$ and $s_2 \in B$. So if s_1 starts with c then we just have to remove it. Consequently, Der c (A @ B) = (Der c (A)) @ B. This case does not apply here though, because we already proved that if r_1 is nullable, then $L(r_1)$ contains the empty string. In this case, every string in A @ B is either of the form $s_1 @ s_2$, with $s_1 \in A$ and $s_2 \in B$, or s_3 with $s_3 \in B$. This means $Der c (A @ B) = ((Der c (A)) @ B) \cup Der c B$. But this proves that (**) is $Der c (L(r_1) @ L(r_2))$.

Similarly in the case where r_1 is *not* nullable.

• Sixth Case: $P(r^*)$ is $L(der c(r^*)) = Der c L(r^*)$. We can assume already:

$$P(r)$$
: $L(der c r) = Der c (L(r))$ (I)

We have $der c(r^*) = der c r \cdot r^*$. Which means $L(der c(r^*)) = L(der c r \cdot r^*)$ and further $L(der c r) @ L(r^*)$. By induction hypothesis (I) we know that is equal to $(Der c L(r)) @ L(r^*)$. (*)

Let us now analyse $Der \, c \, L(r^*)$, which is equal to $Der \, c \, ((L(r))^*)$. Now $(L(r))^*$ is defined as $\bigcup_{n \geq 0} L(r)^n$. We can write this as $L(r)^0 \cup \bigcup_{n \geq 1} L(r)^n$, where we just separated the first union and then let the "big-union" start from 1. Form this we can already infer

$$\begin{array}{c} \operatorname{Der} c\left(L(r^*)\right) = \operatorname{Der} c\left(L(r)^0 \cup \bigcup_{n \geq 1} L(r)^n\right) = \\ \left(\operatorname{Der} c L(r)^0\right) \cup \operatorname{Der} c\left(\bigcup_{n \geq 1} L(r)^n\right) \end{array}$$

The first union "disappears" since $Der c(L(r)^0) = \mathbf{0}$.