Proof

Recall the definitions for regular expressions and the language associated with
a regular expression:

r o= 0 L(0) =@
1 L(1) < {r
- L) (re7)
| r+n L(r1-12) = L(r1) @L(r2)
. L(r +72) € L(r) UL(r2)
L(r*) & Uyso L(r)"

We also defined the notion of a derivative of a regular expression (the derivative
with respect to a character):

derc (0) = 0

derc (1) L=

der ¢ (d) & jfc=dthenlelse0

derc(ry +17) of (dercry) + (dercry)

derc(ry-17) LT nullable(rq)
then ((dercry) -r2) + (dercry)
else (dercry) - 12

derc (r*) def (dercr) - (r*)

With our definition of regular expressions comes an induction principle. Given
a property P over regular expressions. We can establish that Vr. P(r) holds,
provided we can show the following:

1. P(0), P(1) and P(c) all hold,

2. P(rq + ;) holds under the induction hypotheses that P(r1) and P(r;)
hold,

3. P(rq - r2) holds under the induction hypotheses that P(r1) and P(r;) hold,
and

4. P(r*) holds under the induction hypothesis that P(r) holds.
Let us try out an induction proof. Recall the definition
Derc A% {s | cuse A}
whereby A is a set of strings. We like to prove
P(r) & L(dercr) = Derc (L(r))

by induction over the regular expression r.



Proof
According to 1. above we need to prove P(0), P(1) and P(d). Lets do this in
turn.

e First Case: P(0) is L(derc0) = Derc (L(0)) (a). We have derc0 = 0 and
L(0) = 0. We also have Derc0 = 0. Hence we have 0 = 0 in (a).

e Second Case: P(1) is L(derc1) = Derc(L(1)) (b). We have derc1 = 0,
L(0) =0and L(1) = {""}. We also have Derc{""} = 0. Hence we have
0 = 0in (b).

e Third Case: P(d) is L(dercd) = Derc(L(d)) (c). We need to treat the
casesd = cand d # c.

d =c: Wehavedercc =1and L(1) = {""}. We also have L(c) = {"c"
and Derc{"c"} = {""}. Hence we have {""} = {""} in (¢).

d # c¢: We have dercd = 0. We also have Derc {"d"} = 0. Hence we
have 0 = 0 in (c).

These were the easy base cases. Now come the inductive cases.

e Fourth Case: P(ry + 1) is L(derc (r; +13)) = Derc (L(ry +72)) (d). This
is what we have to show. We can assume already:

P(ry): L(dercri) = Derc(L(r1)) (D)
P(ry):  L(dercry) = Derc (L(r)) (IN)

We have that der ¢ (r1 +r2) = (dercry) + (dercry) and also L((dercry) +
(dercry)) = L(dercry) U L(dercry). By (I) and (II) we know that the left-
hand side is Derc (L(r1)) U Derc (L(r2)). You need to ponder a bit, but
you should see that

Derc(AUB) = (Derc A) U (DercB)

holds for every set of strings A and B. That means the right-hand side of
(d)isalso Derc (L(ry)) UDerc (L(r)), because L(r1 +72) = L(r1) UL(r2).
And we are done with the fourth case.

e Fifth Case: P(r1-rp) is L(derc(ry -r2)) = Derc(L(r1-12)) (e). We can
assume already:

P(ry): L(dercri) = Derc(L(r1)) (D)
P(ry):  L(dercry) = Derc (L(r2)) (IT)

Let us first consider the case where nullable(r;) holds. Then

derc(ry-rp) = ((dercry) - rp) + (dercry).



The corresponding language of the right-hand side is

(L(dercry)@L(rp)) UL(dercry).

By the induction hypotheses (I) and (I), this is equal to

(Derc (L(r1))@L(r2)) U (Derc (L(r)). (%)

We also know that L(rq - r2) = L(ry) @L(r2). We have to know what
Derc (L(r1) @L(rp)) is.

Let us analyse what Der ¢ (A @ B) is for arbitrary sets of strings A and B.
If A does not contain the empty string, then every string in A @ B is of the
form s; @s, where sy € A and s; € B. So if s1 starts with ¢ then we just
have to remove it. Consequently, Derc (A@B) = (Derc(A))@ B. This
case does not apply here though, because we already proved that if r; is
nullable, then L(r1) contains the empty string. In this case, every string
in A @ B is either of the form s; @s;, with s; € A and s, € B, or s3 with
s3 € B. This means Derc (A@B) = ((Derc(A))@ B) U Der ¢ B. But this
proves that (**) is Derc (L(r1) @ L(r7)).

Similarly in the case where rq is not nullable.

e Sixth Case: P(r*)is L(derc (r*)) = Derc L(r*). We can assume already:
P(r): L(dercr) = Derc(L(r)) (I)

Wehavederc (r*) = dercr-r*. Whichmeans L(derc (r*)) = L(dercr-r*)
and further L(dercr) @ L(r*). By induction hypothesis (I) we know that
is equal to (Derc L(r)) @L(r*). (*)

Let usnow analyse Der ¢ L(r*), whichisequal to Der ¢ ((L(r))*). Now (L(r))*
is defined as |J,;~( L(r)". We can write this as L(r)® U J,,~ L(r)", where we just
separated the first union and then let the “big-union” start from 1. Form this
we can already infer

Derc (L(r*)) = Derc (L(r)° UU,>1 L(r)") =
(Derc L(r)®) U Der ¢ (Uy>1 L(r)")

The first union “disappears” since Der c (L(r)o) =0.



