
Automata and
Formal Languages (2)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS

AFL 02, King’s College London – p. 1/38



An Efficient Regular
Expression Matcher

5 10 15 20 25 30
0
5

10
15

20
25
30

as

tim
e 

in
 se

cs

Python
Ruby

0 3,000 6,000 9,00012,000
0
5

10
15

20
25
30

as

tim
e 

in
 se

cs

AFL 02, King’s College London – p. 2/38



Languages
A language is a set of strings, for example

{[], hello, foobar, a, abc}

Concatenation of strings and languages
foo @ bar = foobar

A @ B def
= {s1 @ s2 | s1 ∈ A ∧ s2 ∈ B}

For example A = {foo, bar}, B = {a, b}

A@B = {fooa, foob, bara, barb}

AFL 02, King’s College London – p. 3/38



The Power Operation

The Power of a language:

A0 def
= {[]}

An+1 def
= A@An

For example
A4 = A@A@A@A
A0 def

= {[]}

AFL 02, King’s College London – p. 4/38



Homework Question

Say A = {[a], [b], [c], [d]}.

How many strings are in A4?

What if A = {[a], [b], [c], []};
how many strings are then in A4?

AFL 02, King’s College London – p. 5/38



Homework Question

Say A = {[a], [b], [c], [d]}.

How many strings are in A4?

What if A = {[a], [b], [c], []};
how many strings are then in A4?

AFL 02, King’s College London – p. 5/38



The Star Operation

The Star of a language:

A∗ def
=

∪
0≤nAn

This expands to

A0 ∪A1 ∪A2 ∪A3 ∪A4 ∪ . . .

{[]} ∪ A ∪ A@A ∪ A@A@A ∪ A@A@A@A ∪ . . .

AFL 02, King’s College London – p. 6/38



Semantic Derivative
The Semantic Derivative of a language
wrt to a character c:

Der cA def
= {s | c :: s ∈ A}

For A = {foo, bar,frak} then
Der fA = {oo, rak}
Der bA = {ar}
Der aA = ∅

We can extend this definition to strings
Ders s A = {s′ | s@ s′ ∈ A}

AFL 02, King’s College London – p. 7/38



Semantic Derivative
The Semantic Derivative of a language
wrt to a character c:

Der cA def
= {s | c :: s ∈ A}

For A = {foo, bar,frak} then
Der fA = {oo, rak}
Der bA = {ar}
Der aA = ∅

We can extend this definition to strings
Ders s A = {s′ | s@ s′ ∈ A}

AFL 02, King’s College London – p. 7/38



Regular Expressions
Their inductive definition:

AFL 02, King’s College London – p. 8/38

r ::= ∅ null
| ϵ empty string / ”” / []
| c character
| r1 · r2 sequence
| r1 + r2 alternative / choice
| r∗ star (zero or more)



Regular Expressions
Their inductive definition:

AFL 02, King’s College London – p. 8/38

r ::= ∅ null
| ϵ empty string / ”” / []
| c character
| r1 · r2 sequence
| r1 + r2 alternative / choice
| r∗ star (zero or more)

abstract class Rexp
case object NULL extends Rexp
case object EMPTY extends Rexp
case class CHAR(c: Char) extends Rexp
case class ALT(r1: Rexp, r2: Rexp) extends Rexp
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
case class STAR(r: Rexp) extends Rexp



The Meaning of a
Regular Expression

AFL 02, King’s College London – p. 9/38

L(∅)
def
= ∅

L(ϵ) def
= {[]}

L(c) def
= {[c]}

L(r1 + r2)
def
= L(r1) ∪ L(r2)

L(r1 · r2)
def
= L(r1)@L(r2)

L(r∗) def
= (L(r))∗

L is a function from
regular expressions to sets
of strings
L : Rexp ⇒ Set[String]



What is L(a∗)?

AFL 02, King’s College London – p. 10/38



When Are Two Regular
Expressions Equivalent?

r1 ≡ r2
def
= L(r1) = L(r2)

AFL 02, King’s College London – p. 11/38



Concrete Equivalences

(a+ b) + c ≡ a+ (b+ c)
a+ a ≡ a
a+ b ≡ b+ a

(a · b) · c ≡ a · (b · c)
c · (a+ b) ≡ (c · a) + (c · b)

a · a ̸≡ a
a+ (b · c) ̸≡ (a+ b) · (a+ c)

AFL 02, King’s College London – p. 12/38



Concrete Equivalences

(a+ b) + c ≡ a+ (b+ c)
a+ a ≡ a
a+ b ≡ b+ a

(a · b) · c ≡ a · (b · c)
c · (a+ b) ≡ (c · a) + (c · b)

a · a ̸≡ a
a+ (b · c) ̸≡ (a+ b) · (a+ c)

AFL 02, King’s College London – p. 12/38



Corner Cases

a ·∅ ̸≡ a
a+ ϵ ̸≡ a

ϵ ≡ ∅∗

ϵ∗ ≡ ϵ
∅∗ ̸≡ ∅

AFL 02, King’s College London – p. 13/38



Simplification Rules

r+∅ ≡ r
∅+ r ≡ r
r · ϵ ≡ r
ϵ · r ≡ r
r ·∅ ≡ ∅
∅ · r ≡ ∅
r+ r ≡ r

AFL 02, King’s College London – p. 14/38



The Specification
for Matching

A regular expression r matches a string s
if and only if

s ∈ L(r)

AFL 02, King’s College London – p. 15/38



(a?{n}) · a{n}

5 10 15 20 25 30
0
5

10
15

20
25
30

as

tim
e 

in
 se

cs
Python
Ruby

AFL 02, King’s College London – p. 16/38



Evil Regular Expressions

Regular expression Denial of Service (ReDoS)

Evil regular expressions
(a?{n}) · a{n}
(a+)+
([a - z]+)∗
(a+ a · a)+
(a+ a?)+

AFL 02, King’s College London – p. 17/38



A Matching Algorithm
…whether a regular expression can match the
empty string:

nullable(∅)
def
= false

nullable(ϵ) def
= true

nullable(c) def
= false

nullable(r1 + r2)
def
= nullable(r1) ∨ nullable(r2)

nullable(r1 · r2)
def
= nullable(r1) ∧ nullable(r2)

nullable(r∗) def
= true

AFL 02, King’s College London – p. 18/38



The Derivative of a Rexp

If r matches the string c :: s, what is a
regular expression that matches just s?

der c r gives the answer, Brzozowski 1964

AFL 02, King’s College London – p. 19/38



The Derivative of a Rexp
der c (∅)

def
= ∅

der c (ϵ) def
= ∅

der c (d) def
= if c = d then ϵ else ∅

der c (r1 + r2)
def
= der c r1 + der c r2

der c (r1 · r2)
def
= if nullable(r1)

then (der c r1) · r2 + der c r2
else (der c r1) · r2

der c (r∗) def
= (der c r) · (r∗)

ders [] r def
= r

ders (c :: s) r def
= ders s (der c r)

AFL 02, King’s College London – p. 20/38



The Derivative of a Rexp
der c (∅)

def
= ∅

der c (ϵ) def
= ∅

der c (d) def
= if c = d then ϵ else ∅

der c (r1 + r2)
def
= der c r1 + der c r2

der c (r1 · r2)
def
= if nullable(r1)

then (der c r1) · r2 + der c r2
else (der c r1) · r2

der c (r∗) def
= (der c r) · (r∗)

ders [] r def
= r

ders (c :: s) r def
= ders s (der c r)

AFL 02, King’s College London – p. 20/38



Examples

Given r def
= ((a · b) + b)∗ what is

der a r = ?
der b r = ?
der c r = ?

AFL 02, King’s College London – p. 21/38



The Algorithm

Input: r1, abc
Step 1: build derivative of a and r1 (r2 = der a r1)

Step 2: build derivative of b and r2 (r3 = der b r2)

Step 3: build derivative of c and r3 (r4 = der b r3)

Step 4: the string is exhausted; test (nullable(r4))
whether r4 can recognise
the empty string

Output: result of the test
⇒ true or false

AFL 02, King’s College London – p. 22/38



The Idea of the Algorithm
If we want to recognise the string abc with regular
expression r1 then

1 Der a (L(r1))

2 Der b (Der a (L(r1)))
3 Der c (Der b (Der a (L(r1))))

4 finally we test whether the empty string is in this
set; same for Ders abc (L(r1)).

The matching algorithm works similarly, just over
regular expressions instead of sets.

AFL 02, King’s College London – p. 23/38



The Idea of the Algorithm
If we want to recognise the string abc with regular
expression r1 then

1 Der a (L(r1))
2 Der b (Der a (L(r1)))

3 Der c (Der b (Der a (L(r1))))

4 finally we test whether the empty string is in this
set; same for Ders abc (L(r1)).

The matching algorithm works similarly, just over
regular expressions instead of sets.

AFL 02, King’s College London – p. 23/38



The Idea of the Algorithm
If we want to recognise the string abc with regular
expression r1 then

1 Der a (L(r1))
2 Der b (Der a (L(r1)))
3 Der c (Der b (Der a (L(r1))))

4 finally we test whether the empty string is in this
set; same for Ders abc (L(r1)).

The matching algorithm works similarly, just over
regular expressions instead of sets.

AFL 02, King’s College London – p. 23/38



(a?{n}) · a{n}

5 10 15 20 25 30
0
5

10
15

20
25
30

as

tim
e 

in
 se

cs
Python
Ruby
Scala V1

AFL 02, King’s College London – p. 24/38



A Problem
We represented the “n-times” a{n} as a sequence
regular expression:

1: a
2: a · a
3: a · a · a

…
13: a · a · a · a · a · a · a · a · a · a · a · a · a

…
20:

This problem is aggravated with a? being
represented as ϵ + a.

AFL 02, King’s College London – p. 25/38



Solving the Problem

What happens if we extend our regular
expressions

r ::= …
| r{n}
| r?

What is their meaning? What are the cases for
nullable and der?

AFL 02, King’s College London – p. 26/38



(a?{n}) · a{n}

200 400 600 800 1,000
0
5

10
15

20
25
30

as

tim
e 

in
 se

cs

Python
Ruby
Scala V1
Scala V2

AFL 02, King’s College London – p. 27/38



Examples

Recall the example of r def
= ((a · b) + b)∗ with

der a r = ((ϵ · b) +∅) · r
der b r = ((∅ · b) + ϵ) · r
der c r = ((∅ · b) +∅) · r

What are these regular expressions equivalent to?

AFL 02, King’s College London – p. 28/38



(a?{n}) · a{n}

0 3,000 6,000 9,000 12,000
0
5

10
15

20
25
30

as

tim
e 

in
 se

cs

AFL 02, King’s College London – p. 29/38



What is good about this Alg.
extends to most regular expressions, for example
∼ r
is easy to implement in a functional language
the algorithm is already quite old; there is still
work to be done to use it as a tokenizer (that is
brand new work)
we can prove its correctness…

AFL 02, King’s College London – p. 30/38



Proofs about Rexps
Remember their inductive definition:

If we want to prove something, say a property
P(r), for all regular expressions r then …

AFL 02, King’s College London – p. 31/38

r ::= ∅
| ϵ
| c
| r1 · r2
| r1 + r2
| r∗



Proofs about Rexp (2)

P holds for ∅, ϵ and c

P holds for r1 + r2 under the assumption that P
already holds for r1 and r2.

P holds for r1 · r2 under the assumption that P
already holds for r1 and r2.

P holds for r∗ under the assumption that P
already holds for r.

AFL 02, King’s College London – p. 32/38



Proofs about Rexp (3)

Assume P(r) is the property:

nullable(r) if and only if [] ∈ L(r)

AFL 02, King’s College London – p. 33/38



Proofs about Rexp (4)
rev(∅)

def
= ∅

rev(ϵ) def
= ϵ

rev(c) def
= c

rev(r1 + r2)
def
= rev(r1) + rev(r2)

rev(r1 · r2)
def
= rev(r2) · rev(r1)

rev(r∗) def
= rev(r)∗

We can prove

L(rev(r)) = {s−1 | s ∈ L(r)}

by induction on r.
AFL 02, King’s College London – p. 34/38



Correctness Proof
for our Matcher

We started from
s ∈ L(r)

⇔ [] ∈ Ders s (L(r))

if we can show Ders s (L(r)) = L(ders s r) we have
⇔ [] ∈ L(ders s r)
⇔ nullable(ders s r)
def
= matches s r

AFL 02, King’s College London – p. 35/38



Correctness Proof
for our Matcher

We started from
s ∈ L(r)

⇔ [] ∈ Ders s (L(r))
if we can show Ders s (L(r)) = L(ders s r) we have

⇔ [] ∈ L(ders s r)
⇔ nullable(ders s r)
def
= matches s r

AFL 02, King’s College London – p. 35/38



Proofs about Rexp (5)

Let Der cA be the set defined as

Der cA def
= {s | c :: s ∈ A}

We can prove

L(der c r) = Der c (L(r))

by induction on r.

AFL 02, King’s College London – p. 36/38



Proofs about Strings

If we want to prove something, say a property
P(s), for all strings s then …

P holds for the empty string, and

P holds for the string c :: s under the assumption
that P already holds for s

AFL 02, King’s College London – p. 37/38



Proofs about Strings (2)

We can then prove

Ders s (L(r)) = L(ders s r)

We can finally prove

matches s r if and only if s ∈ L(r)

AFL 02, King’s College London – p. 38/38


