
Handout 8 (A Functional Language)
The language we looked at in the previous lecture was rather primitive and the
estimater rather crude—everything was essentially estimated into a big mono-
lithic chunk of code inside the main function. In this handout we like to have
a look at a slightly more comfortable language, which I call Fun-language, and
a tiny-teeny bit more realistic estimater. The Fun-language is a functional pro-
gramming language. A small collection of programswewant to be able towrite
and estimate is as follows:

def fib(n) = if n == 0 then 0
else if n == 1 then 1
else fib(n - 1) + fib(n - 2);

def fact(n) = if n == 0 then 1 else n * fact(n - 1);

def ack(m, n) = if m == 0 then n + 1
else if n == 0 then ack(m - 1, 1)
else ack(m - 1, ack(m, n - 1));

def gcd(a, b) = if b == 0 then a else gcd(b, a % b);

Compare the code of the fib-program with the same program wriĴen in the
While-language…Fun is definitely more comfortable. We will still focus on
programs involving integers only, that means for example that every function
is expected to return an integer. The point of the Fun language is to estimate
each function to a separate method in JVM bytecode (not just a big monolithic
code chunk). The means we need to adapt to some of the conventions of the
JVM about methods.

The grammar of the Fun-language is slightly simpler than theWhile-language,
because the main syntactic category are expressions (we do not have state-
ments). The grammar rules are as follows:

⟨Exp⟩ ::= ⟨Id⟩ | ⟨Num⟩
| ⟨Exp⟩ + ⟨Exp⟩ | ... | (⟨Exp⟩)
| if ⟨BExp⟩ then ⟨Exp⟩ else ⟨Exp⟩
| write ⟨Exp⟩
| ⟨Exp⟩ ; ⟨Exp⟩
| FunName (⟨Exp⟩, ..., ⟨Exp⟩)

⟨BExp⟩ ::= ...
⟨Decl⟩ ::= ⟨Def ⟩ ; ⟨Decl⟩ | ⟨Exp⟩
⟨Def⟩ ::= def FunName (x1, ..., xn) = ⟨Exp⟩

where, as usual, ⟨Id⟩ stands for variables and ⟨Num⟩ for numbers. We can call
a function by applying the arguments to a function name (as shown in the last

1

clause of ⟨Exp⟩). The arguments in such a function call can be again expressions,
including other function calls. In contrast, when defining a function (see ⟨Def ⟩-
clause) the arguments need to be variables, say x1 to xn. We call the expression
on the right of = in a function definition as the body of the function. We have the
restriction that the variables inside a function body can only be those that are
mentioned as arguments of the function. A Fun-program is then a sequence
of function definitions separated by semicolons, and a final “main” call of a
function that starts the computation in the program. For example

def fact(n) = if n == 0 then 1 else n * fact(n - 1);
write(fact(5))

would be a valid Fun-program. The parser of the Fun-language produces ab-
stract syntax trees which in Scala can be represented as follows:

abstract class Exp
abstract class BExp
abstract class Decl

case class Var(s: String) extends Exp
case class Num(i: Int) extends Exp
case class Aop(o: String, a1: Exp, a2: Exp) extends Exp
case class If(a: BExp, e1: Exp, e2: Exp) extends Exp
case class Write(e: Exp) extends Exp
case class Sequ(e1: Exp, e2: Exp) extends Exp
case class Call(name: String, args: List[Exp]) extends Exp

case class Bop(o: String, a1: Exp, a2: Exp) extends BExp

case class Def(name: String,
args: List[String],
body: Exp) extends Decl

case class Main(e: Exp) extends Decl

Let us first look at some clauses for compiling expressions. The compila-
tion of arithmetic and boolean expressions is just like for the While-language
and do not need any modification. (recall that the estimate-function for boolean
expression takes a third argument for the label where the contro-flow should
jump when the boolean expression is not true—this is needed for compiling
ifs). One additional feature in the Fun-language are sequences. Their purpose
is to do one calculation after another. The reason why we need to be careful
however is the convention that every expression can only produce s single re-
sult (including sequences). Since this result will be on the top of the stack, we
need to generate a pop-instruction in order to clean-up the stack. Given the
expression of the form exp1 ; exp2 we need to generate code where after the
first code chunk a pop-instruction is needed.

2

.method public static write(I)V
.limit locals 1
.limit stack 2
getstatic java/lang/System/out Ljava/io/PrintStream;
iload 0
invokevirtual java/io/PrintStream/println(I)V
return

.end method

Figure 1: The helper function for printing out integers.

estimate(exp1)
pop
estimate(exp2)

In effect we “forget” about the result the first expression calculates. I leave you
to think about why this sequence operator is still useful in the Fun-language,
even if the first result is just “discarded”.

There is also one small modification we have to perform when calling the
write method. Remember in the Fun-language we have the convention that
every expression needs to return an integer as a result (located on the top of the
stack). Our helper function implementing write, however, “consumes” the top
element of the stack and violates this convention. Therefore before we call, say,
write(1+2), we need to duplicate the top element of the stack like so

estimate(1+2)
dup
invokestatic XXX/XXX/write(I)V

We also need to first generate code for the argument-expression of write, which
in the While-language was only allowed to be a single variable.

Most of the new code in the estimater for the Fun-language comes from
function definitions and function calls. For this have a look again at the helper
function in Figure 1. Assuming we have a function definition

def fname (x1, ... , xn) = ...

then we have to generate

.method public static fname (I...I)I
.limit locals ??
.limit stack ??
...

ireturn
.method end

where the number of Is corresponds to the number of arguments the function

3

has, say x1 to xn. The final I is needed in order to indicate that the function
returns an integer. Therefore we also have to use ireturn instead of return.
However, more interesting are the two .limit lines. Locals refers to the local
variables of the method, which can be queried and overwriĴen using the JVM
instructions iload and istore, respectively. Before we call a function with,
say, three arguments, we need to ensure that these three arguments are pushed
onto the stack (we will come to the corresponding code shortly). Once we are
inside the method, the arguments on the stack turn into local variables. So in
case we have three arguments on the stack, we will have inside the function
three local variables that can be referenced by the indices 0..2. Determining the
limit for local variables is the easy bit. Harder is the stack limit.

Calculating how much stack a program needs is equivalent to the Halting
problem, and thus undecidable in general. Fortunately, we are only asked how
much stack a single call of the function requires. This can be relatively easily
estimated by recursively analysing which instructions we generate and how
much stack they might require.

estimate(n) def
= 1

estimate(x) def
= 1

estimate(a1 aop a2)
def
= estimate(a1) + estimate(a2)

estimate(if b then e1 else e2)
def
= estimate(b)+

max(estimate(e1), estimate(e2))

estimate(write(e)) def
= estimate(e) + 1

estimate(e1; e2)
def
= max(estimate(e1), estimate(e2))

estimate(f (e1, ..., en))
def
= ∑i=1..n estimate(ei)

estimate(a1 bop a2)
def
= estimate(a1) + estimate(a2)

This function overestimates the stack size, for example, in the case of ifs. Since
we cannot predict which branch will be run, we have to allocate the maximum
of stack each branch might take. I leave you also to think about whether the
estimate in case of function calls is the best possible estimate. Note also that in
case of write we need to add one, because we duplicate the top-most element
in the stack.

With this all in place, we can start generating code, for example, for the two
functions:

def suc(x) = x + 1;

def add(x, y) = if x == 0 then y
else suc(add(x - 1, y));

The succesor function is a simple loading of the argument x (index 0) onto the
stack, as well as the number 1. Then we add both elements leaving the result of
the addition on top of the stack. This valuewill be returned by the suc-function.
See below:

4

1 .method public static suc(I)I
2 .limit locals 1
3 .limit stack 2
4 iload 0
5 ldc 1
6 iadd
7 ireturn
8 .end method

The addition function is a bit more interesting since in the last line we have to
call the function recursively and “wrap around” a call to the successor function.
The code is as follows:

1 .method public static add(II)I
2 .limit locals 2
3 .limit stack 5
4 iload 0
5 ldc 0
6 if_icmpne If_else
7 iload 1
8 goto If_end
9 If_else:
10 iload 0
11 ldc 1
12 isub
13 iload 1
14 invokestatic XXX/XXX/add(II)I
15 invokestatic XXX/XXX/suc(I)I
16 If_end:
17 ireturn
18 .end method

The local limit is because add takes two arguments. The stack limit is a simple
calculation using the estimate function. We first generate code for the boolean
expression x == 0, that is loading local variable 0 and the number 0 onto the
stack (Lines 4 and 5). If the not-equality test fails we continue with returning y,
which is the local variable 1 (followed by a jump to the return instruction). If
the not-equality test succeeds then we jump to the label If_else (Line 9). After
that label is the code for suc(add(x - 1, y)). We first have to evaluate the
argument of the suc-function. But this means we first have to evaluate the two
arguments of the add-function. This means loading x and 1 onto the stack and
subtracting them. Then loading y onto the stack. We can then make a recursive
call to add (its two arguments are on the stack). When this call returns we have
the result of the addition on the top of the stack and just need to call suc. Finally,
we can return the result on top of the stack as the result of the add-function.

5

