
Automata and
Formal Languages (8)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also home work is there)

AFL 08, King’s College London, 21. November 2012 – p. 1/24

Building a “Web Browser”

Using a lexer: assume the following regular
expressions

SYM
def
= (a..zA..Z0..9..)

WORD
def
= SYM+

BTAG
def
= <WORD>

ETAG
def
= </WORD>

WHITE
def
= " " + "/n"

AFL 08, King’s College London, 21. November 2012 – p. 2/24

Interpreting a List of Tokens

the text should be formatted consistently up to a
specified width, say 60 characters
potential linebreaks are inserted by the
formatter (not the input)
repeated whitespaces are “condensed” to a single
whitepace
<p> </p> start/end paragraph
 start/end bold
<red> </red> start/end red (cyan, etc)

AFL 08, King’s College London, 21. November 2012 – p. 3/24

Interpreting a List of Tokens

The lexer cannot prevent errors like

 . . .<p></p>

or

 . . .

AFL 08, King’s College London, 21. November 2012 – p. 4/24

Parser Combinators

Parser combinators:

list of tokens︸ ︷︷ ︸
input

⇒ set of (parsed input, unparsed input)︸ ︷︷ ︸
output

sequencing
alternative
semantic action

AFL 08, King’s College London, 21. November 2012 – p. 5/24

Alternative parser (code p || q)

apply p and also q; then combine the outputs

p(input) ∪ q(input)

AFL 08, King’s College London, 21. November 2012 – p. 6/24

Sequence parser (code p ∼ q)

apply first p producing a set of pairs
then apply q to the unparsed parts
then combine the results:
((output1, output2), unparsed part)

{((o1, o2), u2) |
(o1, u1) ∈ p(input)∧
(o2, u2) ∈ q(u1)}

AFL 08, King’s College London, 21. November 2012 – p. 7/24

Function parser (code p =⇒ f)

apply p producing a set of pairs
then apply the function f to each first component

{(f(o1), u1) | (o1, u1) ∈ p(input)}

f is the semantic action (“what to do with the
parsed input”)

AFL 08, King’s College London, 21. November 2012 – p. 8/24

Function parser (code p =⇒ f)

apply p producing a set of pairs
then apply the function f to each first component

{(f(o1), u1) | (o1, u1) ∈ p(input)}

f is the semantic action (“what to do with the
parsed input”)

AFL 08, King’s College London, 21. November 2012 – p. 8/24

Token parser:

if the input is

tok1 :: tok2 :: . . . :: tokn
then return

{(tok1, tok2 :: . . . :: tokn)}
or

{}
if tok1 is not the right token we are looking for

AFL 08, King’s College London, 21. November 2012 – p. 9/24

Number-Token parser:

if the input is

num_tok(42) :: tok2 :: . . . :: tokn
then return

{(42, tok2 :: . . . :: tokn)}
or

{}
if tok1 is not the right token we are looking for

list of tokens⇒ set of (int, list of tokens)

AFL 08, King’s College London, 21. November 2012 – p. 10/24

Number-Token parser:

if the input is

num_tok(42) :: tok2 :: . . . :: tokn
then return

{(42, tok2 :: . . . :: tokn)}
or

{}
if tok1 is not the right token we are looking for

list of tokens⇒ set of (int, list of tokens)

AFL 08, King’s College London, 21. November 2012 – p. 10/24

if the input is
num_tok(42) ::
num_tok(3) ::
tok3 :: . . . :: tokn

and the parser is
ntp ∼ ntp

the successful output will be

{((42, 3), tok2 :: . . . :: tokn)}

Now we can form
(ntp ∼ ntp) =⇒ f

where f is the semantic action (“what to do with
the pair”)

AFL 08, King’s College London, 21. November 2012 – p. 11/24

if the input is
num_tok(42) ::
num_tok(3) ::
tok3 :: . . . :: tokn

and the parser is
ntp ∼ ntp

the successful output will be

{((42, 3), tok2 :: . . . :: tokn)}
Now we can form

(ntp ∼ ntp) =⇒ f

where f is the semantic action (“what to do with
the pair”)

AFL 08, King’s College London, 21. November 2012 – p. 11/24

Semantic Actions
Addition

T ∼ + ∼ E =⇒ f((x, y), z)⇒ x + z︸ ︷︷ ︸
semantic action

Multiplication

F ∼ ∗ ∼ T =⇒ f((x, y), z)⇒ x ∗ z

Parenthesis

(∼ E ∼) =⇒ f((x, y), z)⇒ y

AFL 08, King’s College London, 21. November 2012 – p. 12/24

Semantic Actions
Addition

T ∼ + ∼ E =⇒ f((x, y), z)⇒ x + z︸ ︷︷ ︸
semantic action

Multiplication

F ∼ ∗ ∼ T =⇒ f((x, y), z)⇒ x ∗ z

Parenthesis

(∼ E ∼) =⇒ f((x, y), z)⇒ y

AFL 08, King’s College London, 21. November 2012 – p. 12/24

Semantic Actions
Addition

T ∼ + ∼ E =⇒ f((x, y), z)⇒ x + z︸ ︷︷ ︸
semantic action

Multiplication

F ∼ ∗ ∼ T =⇒ f((x, y), z)⇒ x ∗ z

Parenthesis

(∼ E ∼) =⇒ f((x, y), z)⇒ y

AFL 08, King’s College London, 21. November 2012 – p. 12/24

Types of Parsers
Sequencing: if p returns results of type T , and q
results of type S, then p ∼ q returns results of
type

T × S

Alternative: if p returns results of type T then
q must also have results of type T , and p || q
returns results of type

T

Semantic Action: if p returns results of type T
and f is a function from T to S, then p =⇒ f
returns results of type

S

AFL 08, King’s College London, 21. November 2012 – p. 13/24

Types of Parsers
Sequencing: if p returns results of type T , and q
results of type S, then p ∼ q returns results of
type

T × S
Alternative: if p returns results of type T then
q must also have results of type T , and p || q
returns results of type

T

Semantic Action: if p returns results of type T
and f is a function from T to S, then p =⇒ f
returns results of type

S

AFL 08, King’s College London, 21. November 2012 – p. 13/24

Types of Parsers
Sequencing: if p returns results of type T , and q
results of type S, then p ∼ q returns results of
type

T × S
Alternative: if p returns results of type T then
q must also have results of type T , and p || q
returns results of type

T

Semantic Action: if p returns results of type T
and f is a function from T to S, then p =⇒ f
returns results of type

S
AFL 08, King’s College London, 21. November 2012 – p. 13/24

Input Types of Parsers

input: list of tokens
output: set of (output_type, list of tokens)

actually it can be any input type as long as it is a
kind of sequence (for example a string)

AFL 08, King’s College London, 21. November 2012 – p. 14/24

Input Types of Parsers

input: list of tokens
output: set of (output_type, list of tokens)

actually it can be any input type as long as it is a
kind of sequence (for example a string)

AFL 08, King’s College London, 21. November 2012 – p. 14/24

Scannerless Parsers

input: string
output: set of (output_type, string)

but lexers are better when whitespaces or
comments need to be filtered out

AFL 08, King’s College London, 21. November 2012 – p. 15/24

Successful Parses

input: string
output: set of (output_type, string)

a parse is successful whenever the input has been
fully “consumed” (that is the second component is
empty)

AFL 08, King’s College London, 21. November 2012 – p. 16/24

1 abstract class Parser[I, T] {
2 def parse(ts: I): Set[(T, I)]
3

4 def parse_all(ts: I) : Set[T] =
5 for ((head, tail) <- parse(ts); if (tail.isEmpty))
6 yield head
7

8 def || (right : => Parser[I, T]) : Parser[I, T] =
9 new AltParser(this, right)

10 def ==>[S] (f: => T => S) : Parser [I, S] =
11 new FunParser(this, f)
12 def ~[S] (right : => Parser[I, S]) : Parser[I, (T, S)] =
13 new SeqParser(this, right)
14 }

AFL 08, King’s College London, 21. November 2012 – p. 17/24

1 abstract class Parser[I, T] {
2 def parse(ts: I): Set[(T, I)]
3

4 def parse_all(ts: I) : Set[T] =
5 for ((head, tail) <- parse(ts); if (tail.isEmpty))
6 yield head
7

8 def || (right : => Parser[I, T]) : Parser[I, T] =
9 new AltParser(this, right)

10 def ==>[S] (f: => T => S) : Parser [I, S] =
11 new FunParser(this, f)
12 def ~[S] (right : => Parser[I, S]) : Parser[I, (T, S)] =
13 new SeqParser(this, right)
14 }

AFL 08, King’s College London, 21. November 2012 – p. 18/24

1 class SeqParser[I, T, S](p: => Parser[I, T],
2 q: => Parser[I, S])
3 extends Parser[I, (T, S)] {
4 def parse(sb: I) =
5 for ((head1, tail1) <- p.parse(sb);
6 (head2, tail2) <- q.parse(tail1))
7 yield ((head1, head2), tail2)
8 }
9

10 class AltParser[I, T](p: => Parser[I, T],
11 q: => Parser[I, T])
12 extends Parser[I, T] {
13 def parse(sb: I) = p.parse(sb) ++ q.parse(sb)
14 }
15

16 class FunParser[I, T, S](p: => Parser[I, T], f: T => S)
17 extends Parser[I, S] {
18 def parse(sb: I) =
19 for ((head, tail) <- p.parse(sb))
20 yield (f(head), tail)
21 }

AFL 08, King’s College London, 21. November 2012 – p. 19/24

Two Grammars

Which languages are recognised by the following
two grammars?

S → 1 · S · S
| ε

U → 1 · U
| ε

AFL 08, King’s College London, 21. November 2012 – p. 20/24

Ambiguous Grammars

020 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

1s

se
cs

unambiguous

AFL 08, King’s College London, 21. November 2012 – p. 21/24

Ambiguous Grammars

020 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

1s

se
cs

unambiguous
ambiguous

AFL 08, King’s College London, 21. November 2012 – p. 21/24

What about Left-Recursion?

we record when we recursively called a parser

whenever the is a recursion, the parser must have
consumed something — so we can decrease the
input string/list of token by one (at the end)

AFL 08, King’s College London, 21. November 2012 – p. 22/24

While-Language

Stmt → skip
| Id := AExp
| if BExp then Block else Block
| while BExp do Block

Stmts → Stmt ; Stmts
| Stmt

Block → {Stmts}
| Stmt

AExp → . . .
BExp → . . .

AFL 08, King’s College London, 21. November 2012 – p. 23/24

An Interpreter

{
x := 5;
y := x ∗ 3;
y := x ∗ 4;
x := u ∗ 3
}

the interpreter has to record the value of x
before assigning a value to y

eval(stmt, env)

AFL 08, King’s College London, 21. November 2012 – p. 24/24

An Interpreter

{
x := 5;
y := x ∗ 3;
y := x ∗ 4;
x := u ∗ 3
}

the interpreter has to record the value of x
before assigning a value to y
eval(stmt, env)

AFL 08, King’s College London, 21. November 2012 – p. 24/24

