Automata and Formal Languages (8)

Email: christian.urban at kcl.ac.uk Office: S1.27 (1st floor Strand Building) Slides: KEATS (also home work is there)

Building a "Web Browser"

Using a lexer: assume the following regular expressions

> $SYM \equiv (a..zA..Z0..9..)$ $WORD$ $\stackrel{\text{def}}{=}$ SVM^+ $BTAG$ $\stackrel{\text{def}}{=}$ < WORD > $ETAG$ $\stackrel{\text{def}}{=}$ </WORD > $WHITE \stackrel{\text{def}}{=}$ $\frac{1}{\sqrt{m}}$ " $\frac{1}{\sqrt{m}}$ "

Interpreting a List of Tokens

- **•** the text should be formatted consistently up to a specified width, say 60 characters
- **•** potential linebreaks are inserted by the formatter (not the input)
- **•** repeated whitespaces are "condensed" to a single whitepace
- $\bullet < p > \, p$ start/end paragraph
- $\bullet < b > < b >$ start/end bold
- $\bullet < red > start/end red (cyan, etc)$

Interpreting a List of Tokens

The lexer cannot prevent errors like

 $\langle b \rangle ... \langle p \rangle ... \langle b \rangle ... \langle p \rangle$

or

 $\langle b \rangle ... \langle b \rangle$

AFL 08, King's College London, 21. November 2012 - p. 4/24

Parser Combinators

Parser combinators:

list of tokens \Rightarrow set of (parsed input, unparsed input) input ${\overline{\bf{u}}}$ ${\overline{\bf{u}}}$ output

- **•** sequencing
- **a** alternative
- **•** semantic action

Alternative parser (code $p \mid q$)

• apply p and also q ; then combine the outputs

 $p(\text{input}) \cup q(\text{input})$

Sequence parser (code $p \sim q$)

- apply first \boldsymbol{p} producing a set of pairs
- \bullet then apply q to the unparsed parts
- **o** then combine the results: ((output $_1$, output $_2$), unparsed part)

 $\{((o_1, o_2), u_2) \mid$ $(o_1, u_1) \in p$ (input)∧ $(o_2, u_2) \in q(u_1)$

Function parser (code $p \implies f$)

- \bullet apply p producing a set of pairs
- then apply the function \boldsymbol{f} to each first component

 $\{(f(o_1), u_1) | (o_1, u_1) \in p(\text{input})\}$

Function parser (code $p \Longrightarrow f$)

- apply p producing a set of pairs
- then apply the function \boldsymbol{f} to each first component

 $\{(f(o_1), u_1) | (o_1, u_1) \in p(\text{input})\}$

 f is the semantic action ("what to do with the parsed input")

Token parser:

o if the input is

$tok_1 :: tok_2 :: \ldots :: tok_n$

then return

$\{(tok_1, tok_2 :: \ldots :: tok_n)\}\$

{}

or

if tok_1 is not the right token we are looking for

Number-Token parser:

• if the input is

 $num_tok(42) :: tok_2 :: \ldots :: tok_n$ then return

$$
\{(42, \; tok_2:: \ldots::tok_n)\}
$$

or

{} if tok_1 is not the right token we are looking for

Number-Token parser:

• if the input is

 $num_tok(42) :: tok_2 :: \ldots :: tok_n$ then return

 $\{(42, tok_2::...::tok_n)\}\$

or

{} if tok_1 is not the right token we are looking for

list of tokens \Rightarrow set of (int, list of tokens)

 \bullet if the input is

$$
\frac{num_tok(42) ::}{num_tok(3) ::} \\ tok_3 :: \ldots :: tok_n
$$

and the parser is

$ntp \sim ntp$

the successful output will be

 $\{((42,3),\;tok_2::...::tok_n)\}\$

 \bullet if the input is

$$
\frac{num_tok(42) ::}{num_tok(3) ::} \\ tok_3 :: \ldots :: tok_n
$$

and the parser is

 $ntp \sim ntp$

the successful output will be

 $\{((42,3),\;tok_2::...::tok_n)\}\$

Now we can form

 $(ntp \sim ntp) \Longrightarrow f$ where f is the semantic action ("what to do with the $pair'$)

Semantic Actions

Addition

 $T \sim + \sim E \Longrightarrow f((x, y), z) \Rightarrow x + z$ semantic action

Semantic Actions

Addition

$$
T\sim +\sim E \Longrightarrow \underbrace{f((x,y),z)}_{\text{semantic action}} \Rightarrow x+z
$$

Multiplication

 $F \sim * \sim T \Longrightarrow f((x, y), z) \Rightarrow x * z$

AFL 08, King's College London, 21. November 2012 - p. 12/24

Semantic Actions

Addition

$$
T\sim +\sim E \Longrightarrow \underbrace{f((x,y),z)}_{\text{semantic action}} \Rightarrow x+z
$$

Multiplication

 $F \sim * \sim T \Longrightarrow f((x, y), z) \Rightarrow x * z$

Parenthesis

$$
(\sim E \sim) \Longrightarrow f((x, y), z) \Rightarrow y
$$

AFL 08, King's College London, 21. November 2012 - p. 12/24

Types of Parsers

• Sequencing: if p returns results of type T , and q results of type S, then $p \sim q$ returns results of type

 $T \times S$

Types of Parsers

• Sequencing: if p returns results of type T , and q results of type S, then $p \sim q$ returns results of type

$T \times S$

• Alternative: if p returns results of type T then q must also have results of type T, and $p \mid q$ returns results of type

 \bm{T}

Types of Parsers

• Sequencing: if p returns results of type T , and q results of type S, then $p \sim q$ returns results of type

$T \times S$

• Alternative: if p returns results of type T then q must also have results of type T , and $p \mid q$ returns results of type

\bm{T}

 \bullet **Semantic Action:** if p returns results of type T and f is a function from T to S , then $p \implies f$ returns results of type

Input Types of Parsers

- o input: list of tokens
- o output: set of (output_type, list of tokens)

Input Types of Parsers

- input: list of tokens
- output: set of (output type, list of tokens)

actually it can be any input type as long as it is a kind of sequence (for example a string)

Scannerless Parsers

- o input: string
- o output: set of (output_type, string)

but lexers are better when whitespaces or comments need to be filtered out

Successful Parses

- o input: string
- o output: set of (output_type, string)

a parse is successful whenever the input has been fully "consumed" (that is the second component is empty)

```
1 abstract class Parser[I, T] {
2 def parse(ts: I): Set[(T, I)]
3
4 def parse_all(ts: I) : Set[T] =
5 for ((head, tail) <- parse(ts); if (tail.isEmpty))
6 yield head
7
8 def || (right : => Parser[I, T]) : Parser[I, T] =
9 new AltParser(this, right)
10 def ==>[S] (f: => T => S) : Parser [I, S] =
11 new FunParser(this, f)
12 def ~[S] (right : => Parser[I, S]) : Parser[I, (T, S)] =
13 new SeqParser(this, right)
14 }
```

```
1 abstract class Parser[I, T] {
2 def parse(ts: I): Set[(T, I)]
3
4 def parse_all(ts: I) : Set[T] =
5 for ((head, tail) <- parse(ts); if (tail.isEmpty))
6 yield head
7
8 def || (right : => Parser[I, T]) : Parser[I, T] =
9 new AltParser(this, right)
10 def ==>[S] (f: => T => S) : Parser [I, S] =
11 new FunParser(this, f)
12 def ~[S] (right : => Parser[I, S]) : Parser[I, (T, S)] =
13 new SeqParser(this, right)
14 }
```

```
1 class SeqParser[I, T, S](p: => Parser[I, T],
2 q: => Parser[I, S])
3 extends Parser[I, (T, S)] {
4 def parse(sb: I) =
5 for ((head1, tail1) <- p.parse(sb);
6 (head2, tail2) <- q.parse(tail1))
7 yield ((head1, head2), tail2)
8 }
9
10 class AltParser[I, T](p: => Parser[I, T],
11 q: => Parser[I, T])
12 extends Parser[I, T] {
13 def parse(sb: I) = p.parse(sb) ++ q.parse(sb)
14 }
15
16 class FunParser[I, T, S](p: => Parser[I, T], f: T => S)
17 extends Parser[I, S] {
18 def parse(sb: I) =
19 for ((head, tail) <- p.parse(sb))
20 yield (f(head), tail)
21 }
```
Two Grammars

Which languages are recognised by the following two grammars?

AFL 08, King's College London, 21. November 2012 - p. 21/24

AFL 08, King's College London, 21. November 2012 - p. 21/24

What about Left-Recursion?

- we record when we recursively called a parser
- whenever the is a recursion, the parser must have consumed something $-$ so we can decrease the input string/list of token by one (at the end)

While-Language

 $Stmt \rightarrow$ skip $Id := AExp$ $|$ if $BExp$ then $Block$ else $Block$ | while $BExp$ do $Block$ $St mts \rightarrow St m t$; Stmts | Stmt $Block \rightarrow \{Stmts\}$ | Stmt $AExp \rightarrow ...$ $BExp \rightarrow ...$

An Interpreter

{ $x := 5$; $y := x * 3$; $y := x * 4;$ $x := u * 3$ }

 \bullet the interpreter has to record the value of x before assigning a value to \boldsymbol{y}

An Interpreter

{ $x := 5$; $y := x * 3$; $y := x * 4;$ $x := u * 3$ }

- \bullet the interpreter has to record the value of \bm{x} before assigning a value to \boldsymbol{y}
- eval(stmt, env)