
Automata and
Formal Languages (7)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also home work is there)

AFL 07, King’s College London, 14. November 2012 – p. 1/10

(a?{n})a{n}

0 5 10 15 20 25 30
0

5

10

15

20

25

30

as

se
cs

Python
Ruby (Daniel Baldwin)

Scala V1
Scala V2 with simplifications

AFL 07, King’s College London, 14. November 2012 – p. 2/10

0 2000 4000 6000 8000 10000
0
1
2
3
4
5
6

as

se
cs

Scala Internal
Scala V3 with explicit _{_}

der c (r1 · r2)
def
= if nullable r1

then ((der c r1) · r2) + (der c r2)
else (der c r1) · r2

der c (r{n}) def
= if n = 0 then ∅

else (der c r) · r{n− 1}
AFL 07, King’s College London, 14. November 2012 – p. 3/10

CFGs
A context-free grammar (CFG) G consists of:

a finite set of nonterminal symbols (upper case)
a finite terminal symbols or tokens (lower case)
a start symbol (which must be a nonterminal)
a set of rules

A→ rhs
where rhs are sequences involving terminals and
nonterminals (can also be empty).

We can also allow rules
A→ rhs1|rhs2| . . .

AFL 07, King’s College London, 14. November 2012 – p. 4/10

CFGs
A context-free grammar (CFG) G consists of:

a finite set of nonterminal symbols (upper case)
a finite terminal symbols or tokens (lower case)
a start symbol (which must be a nonterminal)
a set of rules

A→ rhs
where rhs are sequences involving terminals and
nonterminals (can also be empty).

We can also allow rules
A→ rhs1|rhs2| . . .

AFL 07, King’s College London, 14. November 2012 – p. 4/10

A CFG Derivation

1 Begin with a string with only the start symbol S

2 Replace any non-terminal X in the string by the
right-hand side of some production X → rhs

3 Repeat 2 until there are no non-terminals

S → . . .→ . . .→ . . .→ . . .

AFL 07, King’s College London, 14. November 2012 – p. 5/10

Language of a CFG

Let G be a context-free grammar with start
symbol S. Then the language L(G) is:

{c1 . . . cn | ∀i. ci ∈ T ∧ S →∗ c1 . . . cn}

Terminals are so-called because there are no
rules for replacing them
Once generated, terminals are “permanent”
Terminals ought to be tokens of the language (at
least in this course)

AFL 07, King’s College London, 14. November 2012 – p. 6/10

Language of a CFG

Let G be a context-free grammar with start
symbol S. Then the language L(G) is:

{c1 . . . cn | ∀i. ci ∈ T ∧ S →∗ c1 . . . cn}

Terminals are so-called because there are no
rules for replacing them
Once generated, terminals are “permanent”
Terminals ought to be tokens of the language (at
least in this course)

AFL 07, King’s College London, 14. November 2012 – p. 6/10

Arithmetic Expressions

E → num_token
E → E · + · E
E → E · − · E
E → E · ∗ · E
E → (·E·)

A CFG is left-recursive if it has a nonterminal E
such that E →+ E · . . .

AFL 07, King’s College London, 14. November 2012 – p. 7/10

Arithmetic Expressions

E → num_token
E → E · + · E
E → E · − · E
E → E · ∗ · E
E → (·E·)

A CFG is left-recursive if it has a nonterminal E
such that E →+ E · . . .

AFL 07, King’s College London, 14. November 2012 – p. 7/10

Parse Trees
E → F | F · ∗ · F
F → T | T · + · T | T · − · T
T → num_token | (·E·)

E

F

T

(E)

F * F

T

2
T

3

+ T

(E)

F

T + T

3 4
AFL 07, King’s College London, 14. November 2012 – p. 8/10

(2*3)+(3+4)

Ambiguous Grammars

A CFG is ambiguous if there is a string that has at
least parse trees.

E → num_token
E → E · + · E
E → E · − · E
E → E · ∗ · E
E → (·E·)

1 + 2 * 3 + 4

AFL 07, King’s College London, 14. November 2012 – p. 9/10

Dangling Else

Another ambiguous grammar:

E → if E then E
| if E then E else E
| id

if a then if x then y else c

AFL 07, King’s College London, 14. November 2012 – p. 10/10

