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Scala Internal
Scala V3 with explicit _{_}

der c (r1 · r2)
def
= if nullable r1

then ((der c r1) · r2) + (der c r2)
else (der c r1) · r2

der c (r{n}) def
= if n = 0 then ∅

else (der c r) · r{n− 1}
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CFGs
A context-free grammar (CFG) G consists of:

a finite set of nonterminal symbols (upper case)
a finite terminal symbols or tokens (lower case)
a start symbol (which must be a nonterminal)
a set of rules

A→ rhs
where rhs are sequences involving terminals and
nonterminals (can also be empty).

We can also allow rules
A→ rhs1|rhs2| . . .
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A CFG Derivation

1 Begin with a string with only the start symbol S

2 Replace any non-terminal X in the string by the
right-hand side of some production X → rhs

3 Repeat 2 until there are no non-terminals

S → . . .→ . . .→ . . .→ . . .
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Language of a CFG

Let G be a context-free grammar with start
symbol S. Then the language L(G) is:

{c1 . . . cn | ∀i. ci ∈ T ∧ S →∗ c1 . . . cn}

Terminals are so-called because there are no
rules for replacing them
Once generated, terminals are “permanent”
Terminals ought to be tokens of the language (at
least in this course)
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Arithmetic Expressions

E → num_token
E → E · + · E
E → E · − · E
E → E · ∗ · E
E → (·E·)

A CFG is left-recursive if it has a nonterminal E
such that E →+ E · . . .
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Parse Trees
E → F | F · ∗ · F
F → T | T · + · T | T · − · T
T → num_token | (·E·)
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Ambiguous Grammars

A CFG is ambiguous if there is a string that has at
least parse trees.

E → num_token
E → E · + · E
E → E · − · E
E → E · ∗ · E
E → (·E·)

1 + 2 * 3 + 4
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Dangling Else

Another ambiguous grammar:

E → if E then E
| if E then E else E
| id

if a then if x then y else c
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