Automata and Formal Languages (2)

Email: christian.urban at kcl.ac.uk Office: S1.27 (1st floor Strand Building) Slides: KEATS

An Efficient Regular Expression Matcher

AFL 02, King's College London – p. 2/31

Languages, Strings

- **Strings** are lists of characters, for example [], *abc* (Pattern match: *c*::*s*)
- A **language** is a set of strings, for example *{*[], *hello*, *foobar*, *a*, *abc}*
- **c Concatenation** of strings and languages *foo* @ *bar* = *foobar* $A \ @ B \ \stackrel{\text{def}}{=} \ \{ {\scriptsize s}_{\scriptscriptstyle{\text{I}}}\ @ \ {\scriptsize s}_{\scriptscriptstyle{\text{2}}} \ \mid \ {\scriptsize s}_{\scriptscriptstyle{\text{I}}} \in A \land {\scriptsize s}_{\scriptscriptstyle{\text{2}}} \in B \}$

Regular Expressions

Their inductive definition:

The Meaning of a Regular Expression

$$
L(\varnothing) \stackrel{\text{def}}{=} \varnothing
$$

\n
$$
L(\epsilon) \stackrel{\text{def}}{=} {\{\text{II}\}}
$$

\n
$$
L(c) \stackrel{\text{def}}{=} {\{\text{c}\}}
$$

\n
$$
L(r_1 + r_2) \stackrel{\text{def}}{=} L(r_1) \cup L(r_2)
$$

\n
$$
L(r_1 \cdot r_2) \stackrel{\text{def}}{=} L(r_1) \otimes L(r_2)
$$

\n
$$
L(r^*) \stackrel{\text{def}}{=} \bigcup_{n \geq 0} L(r)^n
$$

L is a function from regular expressions to sets of strings $L:$ Rexp \Rightarrow Set[String]

AFL 02, King's College London – p. 5/31

The Meaning of a Regular Expression

$$
L(\varnothing) \stackrel{\text{def}}{=} \varnothing
$$

\n
$$
L(\epsilon) \stackrel{\text{def}}{=} {\{\text{II}\}}
$$

\n
$$
L(c) \stackrel{\text{def}}{=} {\{\text{c}\}}
$$

\n
$$
L(r_1 + r_2) \stackrel{\text{def}}{=} L(r_1) \cup L(r_2)
$$

\n
$$
L(r_1 \cdot r_2) \stackrel{\text{def}}{=} L(r_1) \otimes L(r_2)
$$

\n
$$
L(r^*) \stackrel{\text{def}}{=} \bigcup_{n \geq 0} L(r)^n
$$

 $L(r)^{\circ} \stackrel{\text{def}}{=} \{[] \}$ $L(r)^{n+1} \stackrel{\text{def}}{=} L(r) \, @ \, L(r)^n$

L is a function from regular expressions to sets of strings $L: \text{Rexp} \Rightarrow \text{Set}[\text{String}]$

What is $L(a^*)$?

AFL 02, King's College London – p. 6/31

When Are Two Regular Expressions Equivalent?

$r_1 \equiv r_2 \stackrel{\text{def}}{=} L(r_1) = L(r_2)$

AFL 02, King's College London – p. 7/31

Concrete Equivalences

 $(a + b) + c \equiv a + (b + c)$ $a + a = a$ $a + b \equiv b + a$ $(a \cdot b) \cdot c \equiv a \cdot (b \cdot c)$ $c \cdot (a+b) \equiv (c \cdot a) + (c \cdot b)$

Concrete Equivalences

$$
(a+b)+c \equiv a+(b+c)
$$

\n
$$
a+a \equiv a
$$

\n
$$
a+b \equiv b+a
$$

\n
$$
(a \cdot b) \cdot c \equiv a \cdot (b \cdot c)
$$

\n
$$
c \cdot (a+b) \equiv (c \cdot a) + (c \cdot b)
$$

a · a ̸≡ a $a + (b \cdot c) \equiv (a+b) \cdot (a+c)$

AFL 02, King's College London – p. 8/31

Corner Cases

 $a \cdot \varnothing \neq a$ $a + \epsilon \neq a$ *ϵ ≡* ∅*[∗] ϵ [∗] ≡ ϵ* ∅*[∗] ̸≡* ∅

Simplification Rules

 $r + \varnothing \equiv r$ $\varnothing + r \equiv r$ $r \cdot \epsilon \equiv r$ $\epsilon \cdot r \equiv r$ *r ·* ∅ *≡* ∅ ∅ *· r ≡* ∅ $r + r \equiv r$

AFL 02, King's College London – p. 10/31

The Specification for Matching

A regular expression *r* matches a string *s* if and only if

s ∈ L(*r*)

AFL 02, King's College London – p. 11/31

(*a*?*{n}*) *· a{n}*

Evil Regular Expressions

- Regular expression Denial of Service (ReDoS)
- Evil regular expressions

\n- $$
(a?{n}) \cdot a{n}
$$
\n- $(a^+)^+$
\n- $([a-z]^+)^*$
\n- $(a+a \cdot a)^+$
\n- $(a+a^2)^+$
\n

A Matching Algorithm

…whether a regular expression can match the empty string:

nullable(∅) $nullable(\epsilon)$ *nullable*(*c*) $\mathit{nullable}(r_1 + r_2)$ $\mathit{nullable}(r_{\scriptscriptstyle \rm I} \cdot r_{\scriptscriptstyle \rm 2})$ *nullable*(*r ∗*)

 $\stackrel{\text{def}}{=}$ *false* $\stackrel{\text{def}}{=}$ *true* $\stackrel{\text{def}}{=}$ *false* $\stackrel{\text{def}}{=} \textit{nullable}(r_{1}) \vee \textit{nullable}(r_{2})$ $\stackrel{\text{def}}{=}$ $\textit{nullable}(r_1) \wedge \textit{nullable}(r_2)$ $\stackrel{\text{def}}{=}$ *true*

The Derivative of a Rexp

If *r* matches the string *c*::*s*, what is a regular expression that matches *s*?

der c r gives the answer, Brzozowski 1964

AFL 02, King's College London – p. 15/31

The Derivative of a Rexp (2)

 $der c(\varnothing)$ $\stackrel{\text{def}}{=} \varnothing$ $der c(\epsilon)$ $\stackrel{\text{def}}{=} \varnothing$ *der c*(*d*) $\stackrel{\text{def}}{=}$ if $c = d$ then ϵ else \varnothing $\det c \left(r_1 + r_2 \right) \stackrel{\text{def}}{=} \det c \, r_1 + \det c \, r_2$ $der c (r_1 \cdot r_2) \stackrel{\text{def}}{=}$ if $\textit{nullable}(r_1)$ then $\left($ *der c* $r_1\right) \cdot r_2 +$ *der c* r_2 else $\left($ *der c* $r_1\right) \cdot r_2$ *der c*(*r ∗*) $\stackrel{\text{def}}{=}$ $(\text{der } c\,r) \cdot (r^*)$

The Derivative of a Rexp (2)

 $der c(\varnothing)$ $\stackrel{\text{def}}{=} \varnothing$ $der c(\epsilon)$ $\stackrel{\text{def}}{=} \varnothing$ *der c*(*d*) $\stackrel{\text{def}}{=}$ if $c = d$ then ϵ else \varnothing $\det c \left(r_1 + r_2 \right) \stackrel{\text{def}}{=} \det c \, r_1 + \det c \, r_2$ $der c (r_1 \cdot r_2) \stackrel{\text{def}}{=}$ if $\textit{nullable}(r_1)$ then $\left($ *der c* $r_1\right) \cdot r_2 +$ *der c* r_2 else $\left($ *der c* $r_1\right) \cdot r_2$ *der c*(*r ∗*) $\stackrel{\text{def}}{=}$ $(\text{der } c\,r) \cdot (r^*)$ *ders* []*r* $\stackrel{\text{def}}{=} r$ *ders*(*c*::*s*)*r* $\stackrel{\text{def}}{=}$ *ders s* (*der c r*)

Given $r \stackrel{\text{def}}{=} ((a \cdot b) + b)^*$ what is

 $der \, ar = ?$ $derb r = ?$ $der c r = ?$

AFL 02, King's College London – p. 17/31

The Algorithm

- Input: $r_{\text{\tiny I}}$, *abc*
- Step 1: build derivative of *a* and r_1 $(r_2 = der \, ar_1)$
- Step 2: build derivative of *b* and r_2 $(r_3 = \text{der } br_2)$
- Step 3: build derivative of *c* and r_3 $(r_4 = \text{der } br_3)$
- Step 4: the string is exhausted; test $(multable(r_4))$ whether r_4 can recognise the empty string
- Output: result of the test *⇒ true* or*false*

A Problem

We represented the "n-times" $a\{n\}$ as a sequence regular expression:

> 1: *a* 2: $a \cdot a$ 3: $a \cdot a \cdot a$ … $I3: d \cdot d$ … 20:

This problem is aggravated with *a*? being represented as $\epsilon + a$.

Solving the Problem

What happens if we extend our regular expressions

r ::= … *| r{n} | r*?

What is their meaning? What are the cases for *nullable* and *der*?

(*a*?*{n}*) *· a{n}*

Recall the example of $r \stackrel{\text{def}}{=} ((a \cdot b) + b)^*$ with

$$
der ar = ((\epsilon \cdot b) + \varnothing) \cdot r
$$

$$
der br = ((\varnothing \cdot b) + \epsilon) \cdot r
$$

$$
der cr = ((\varnothing \cdot b) + \varnothing) \cdot r
$$

What are these regular expressions equivalent to?

AFL 02, King's College London – p. 23/31

 $(a?$ *{* n *}*) \cdot a *{* n *}*

Remember their inductive definition:

$$
r \ ::= \ \varnothing
$$
\n
$$
\begin{array}{c} \mid & \in \\ \mid & \in \\ \mid & \in \\ \mid r_1 \cdot r_2 \\ \mid & r^* \end{array}
$$

If we want to prove something, say a property $P(r)$, for all regular expressions *r* then ...

Proofs about Rexp (2)

- *P* holds for ∅, *ϵ* and c
- *P* holds for $r_1 + r_2$ under the assumption that *P* already holds for r_1 and r_2 .
- *P* holds for $r_{{\scriptscriptstyle \rm I}}\cdot r_{{\scriptscriptstyle \rm 2}}$ under the assumption that *P* already holds for r_1 and r_2 .
- *P* holds for *r [∗]* under the assumption that *P* already holds for *r*.

Assume $P(r)$ is the property:

nullable(*r*) if and only if $[$ $] \in L(r)$

AFL 02, King's College London – p. 27/31

$$
\begin{array}{c}rev(\varnothing)\stackrel{\text{def}}{=}\varnothing\\rev(\epsilon)\stackrel{\text{def}}{=}\epsilon\\rev(r_1+r_2)\stackrel{\text{def}}{=}rev(r_1)+rev(r_2)\\rev(r_1\cdot r_2)\stackrel{\text{def}}{=}rev(r_2)\cdot rev(r_1)\\rev(r^*)\stackrel{\text{def}}{=}rev(r)^*\end{array}
$$

We can prove

$$
L(rev(r)) = \{ s^{-1} \mid s \in L(r) \}
$$

by induction on *r*.

Let *Der c A* be the set defined as

$$
Der cA \stackrel{\text{def}}{=} \{s \mid c::s \in A\}
$$

We can prove

$$
L(\mathit{der}\,cr)=\mathit{Der}\,c\,(L(r))
$$

by induction on *r*.

AFL 02, King's College London – p. 29/31

Proofs about Strings

- If we want to prove something, say a property $P(s)$, for all strings *s* then ...
- *P* holds for the empty string, and
- *P* holds for the string *c*::*s* under the assumption that *P* already holds for *s*

We can finally prove

matches(r, s) if and only if $s \in L(r)$

AFL 02, King's College London – p. 31/31