
Handout 2 (Regular Expression Matching)
This lecture is about implementing a more efficient regular expression matcher
(the plots on the right)—more efficient than the matchers from regular expres-
sion libraries in Ruby and Python (the plots on the left). These plots show the
running time for the evil regular expression a?{n}a{n} and string composed of
n as. We will use this regular expression and strings as running example. To
see the substantial differences in the two plots below, note the different scales
of the x-axes.

5 10 15 20 25 30
0
5

10
15
20
25
30

as

tim
e
in
se
cs

Python
Ruby

0 3,000 6,000 9,000 12,000
0
5

10
15
20
25
30

as

tim
e
in
se
cs

Having specified in the previous lecture what problem our regular expression
matcher is supposed to solve, namely for any given regular expression r and
string s answer true if and only if

s ∈ L(r)

we can look at an algorithm to solve this problem. Clearly we cannot use the
function L directly for this, because in general the set of strings L returns is
infinite (recallwhat L(a∗) is). In such cases there is nowaywe can implement an
exhaustive test for whether a string is member of this set or not. In contrast our
matching algorithm will operate on the regular expression r and string s, only,
which are both finite. Before we come to the matching algorithm, however,
let us have a closer look at what it means when two regular expressions are
equivalent.

Regular Expression Equivalences
We already defined in Handout 1 what it means for two regular expressions to
be equivalent, namely if their meaning is the same language:

r1 ≡ r2
def
= L(r1) = L(r2)

It is relatively easy to verify that some concrete equivalences hold, for example

1

(a + b) + c ≡ a + (b + c)
a + a ≡ a
a + b ≡ b + a

(a · b) · c ≡ a · (b · c)
c · (a + b) ≡ (c · a) + (c · b)

but also easy to verify that the following regular expressions are not equivalent

a · a ̸≡ a
a + (b · c) ̸≡ (a + b) · (a + c)

I leave it to you to verify these equivalences and non-equivalences. It is also
interesting to look at some corner cases involving ϵ and ∅:

a ·∅ ̸≡ a
a + ϵ ̸≡ a

ϵ ≡ ∅∗

ϵ∗ ≡ ϵ
∅∗ ̸≡ ∅

Again I leave it to you to make sure you agree with these equivalences and
non-equivalences.

For our matching algorithm however the following seven equivalences will
play an important role:

r +∅ ≡ r
∅+ r ≡ r

r · ϵ ≡ r
ϵ · r ≡ r

r ·∅ ≡ ∅
∅ · r ≡ ∅
r + r ≡ r

which always hold no maĴer what the regular expression r looks like. The first
two are easy to verify since L(∅) is the empty set. The next two are also easy
to verify since L(ϵ) = {[]} and appending the empty string to every string
of another set, leaves the set unchanged. Be careful to fully comprehend the
fifth and sixth equivalence: if you concatenate two sets of strings and one is the
empty set, then the concatenation will also be the empty set. To see this, check
the definition of _ @ _. The last equivalence is again trivial.

What will be important later on is that we can orient these equivalences and
read them from left to right. In this waywe can view them as simplification rules.
Consider for example the regular expression

(r1 +∅) · ϵ + ((ϵ + r2) + r3) · (r4 ·∅) (1)

If we can find an equivalent regular expression that is simpler (smaller for ex-
ample), then this might potentially make our matching algorithm run faster.

2

The reason is that whether a string s is in L(r) or in L(r′) with r ≡ r′ will al-
ways give the same answer. In the example above you will see that the regular
expression is equivalent to r1. You can verify this by iteratively applying the
simplification rules from above:

(r1 +∅) · ϵ + ((ϵ + r2) + r3) · (r4 ·∅)

≡ (r1 +∅) · ϵ + ((ϵ + r2) + r3) ·∅
≡ (r1 +∅) · ϵ +∅
≡ (r1 +∅) +∅
≡ r1 +∅
≡ r1

In each step, I underlined where a simplification rule is applied. Our match-
ing algorithm in the next section will often generate such “useless” ϵs and ∅s,
therefore simplifying them away will make the algorithm quite a bit faster.

The Matching Algorithm
The algorithm we will define below consists of two parts. One is the function
nullable which takes a regular expression as argument and decides whether it
can match the empty string (this means it returns a boolean in Scala). This can
be easily defined recursively as follows:

nullable(∅)
def
= false

nullable(ϵ) def
= true

nullable(c) def
= false

nullable(r1 + r2)
def
= nullable(r1) ∨ nullable(r2)

nullable(r1 · r2)
def
= nullable(r1) ∧ nullable(r2)

nullable(r∗) def
= true

The idea behind this function is that the following property holds:

nullable(r) if and only if [] ∈ L(r)

Note on the left-hand side of the if-and-only-if we have a function we can im-
plement; on the right we have its specification (which we cannot implement in
a programming language).

The other function of ourmatching algorithm calculates a derivative of a reg-
ular expression. This is a function which will take a regular expression, say r,
and a character, say c, as argument and returns a new regular expression. Be
careful that the intuition behind this function is not so easy to grasp on first
reading. Essentially this function solves the following problem: if r can match
a string of the form c :: s, what does the regular expression look like that can
match just s? The definition of this function is as follows:

3

der c (∅)
def
= ∅

der c (ϵ) def
= ∅

der c (d) def
= if c = d then ϵ else ∅

der c (r1 + r2)
def
= der c r1 + der c r2

der c (r1 · r2)
def
= if nullable(r1)

then (der c r1) · r2 + der c r2
else (der c r1) · r2

der c (r∗) def
= (der c r) · (r∗)

The first two clauses can be rationalised as follows: recall that der should calcu-
late a regular expression so that given the “input” regular expression canmatch
a string of the form c :: s, we want a regular expression for s. Since neither∅ nor
ϵ can match a string of the form c :: s, we return ∅. In the third case we have to
make a case-distinction: In case the regular expression is c, then clearly it can
recognise a string of the form c :: s, just that s is the empty string. Therefore we
return the ϵ-regular expression. In the other case we again return ∅ since no
string of the c :: s can be matched. Next come the recursive cases, which are a
bit more involved. Fortunately, the+-case is still relatively straightforward: all
strings of the form c :: s are either matched by the regular expression r1 or r2. So
we just have to recursively call der with these two regular expressions and com-
pose the results again with +. Makes sense? The ·-case is more complicated:
if r1 · r2 matches a string of the form c :: s, then the first part must be matched
by r1. Consequently, it makes sense to construct the regular expression for s
by calling der with r1 and “appending” r2. There is however one exception to
this simple rule: if r1 can match the empty string, then all of c :: s is matched
by r2. So in case r1 is nullable (that is can match the empty string) we have to
allow the choice der c r2 for calculating the regular expression that can match
s. Therefore we have to add the regular expression der c r2 in the result. The
∗-case is again simple: if r∗ matches a string of the form c :: s, then the first part
must be “matched” by a single copy of r. Therefore we call recursively der c r
and “append” r∗ in order to match the rest of s.

If this did not make sense, here is another way to rationalise the definition
of der by considering the following operation on sets:

Der c A def
= {s | c :: s ∈ A}

This operation essentially transforms a set of strings A by filtering out all strings
that do not start with c and then strips off the c from all the remaining strings.
For example suppose A = { foo, bar, frak} then

Der f A = {oo, rak} , Der b A = {ar} and Der a A = ∅

Note that in the last case Der is empty, because no string in A starts with a.
With this operation we can state the following property about der:

L(der c r) = Der c (L(r))

4

This property clarifies what regular expression der calculates, namely take the
set of strings that r canmatch (that is L(r)), filter out all strings not startingwith
c and strip off the c from the remaining strings—this is exactly the language that
der c r can match.

If we want to find out whether the string abc is matched by the regular ex-
pression r1 then we can iteratively apply der as follows

Input: r1, abc

Step 1: build derivative of a and r1 (r2 = der a r1)

Step 2: build derivative of b and r2 (r3 = der b r2)

Step 3: build derivative of c and r3 (r4 = der b r3)

Step 4: the string is exhausted; test (nullable(r4))
whether r4 can recognise the
empty string

Output: result of this test⇒ true or false

Again the operation Der might help to rationalise this algorithm. We want to
know whether abc ∈ L(r1). We do not know yet—but let us assume it is. Then
Der a L(r1) builds the set where all the strings not starting with a are filtered
out. Of the remaining strings, the a is stripped off. Then we continue with
filtering out all strings not starting with b and stripping off the b from the re-
maining strings, that means we build Der b (Der a (L(r1))). Finally we filter out
all strings not starting with c and strip off c from the remaining string. This is
Der c (Der b (Der a (L(r)))). Now if abc was in the original set (L(r1)), then in
Der c (Der b (Der a (L(r)))) must be the empty string. If not, then abc was not
in the language we started with.

Our matching algorithm using der and nullable works similarly, just using
regular expression instead of sets. For this we need to extend the notion of
derivatives from single characters to strings. This can be done using the fol-
lowing function, taking a string and regular expression as input and a regular
expression as output.

ders [] r def
= r

ders (c :: s) r def
= ders s (der c r)

This function iterates der taking one character at the time from the original
string until it is exhausted. Having ders in place, we can finally define our
matching algorithm:

matches s r def
= nullable(ders s r)

and we can claim that

matches s r if and only if s ∈ L(r)

5

holds, which means our algorithm satisfies the specification. Of course we can
claim many things…whether the claim holds any water is a different question,
which for example is the point of the Strand-2 Coursework.

This algorithmwas introduced by Janus Brzozowski in 1964. Itsmain aĴrac-
tions are simplicity and being fast, as well as being easily extendable for other
regular expressions such as r{n}, r?, ∼ r and so on (this is subject of Strand-1
Coursework 1).

The Matching Algorithm in Scala
Another aĴraction of the algorithm is that it can be easily implemented in a
functional programming language, like Scala. Given the implementation of
regular expressions in Scala shown in the first lecture and handout, the func-
tions and subfunctions for matches are shown in Figure 1.

For running the algorithm with our favourite example, the evil regular ex-
pression a?{n}a{n}, we need to implement the optional regular expression and
the exactly n-times regular expression. This can be done with the translations

def OPT(r: Rexp) = ALT(r, EMPTY)

def NTIMES(r: Rexp, n: Int) : Rexp = n match {
case 0 => EMPTY
case 1 => r
case n => SEQ(r, NTIMES(r, n - 1))

}

Running the matcher with the example, we find it is slightly worse then the
matcher in Ruby and Python. Ooops…

5 10 15 20 25 30
0
5

10
15
20
25
30

as

tim
e
in
se
cs

Python
Ruby
Scala V1

Analysing this failure we notice that for a{n} we generate quite big regular ex-
pressions:

6

1 def nullable (r: Rexp) : Boolean = r match {
2 case NULL => false
3 case EMPTY => true
4 case CHAR(_) => false
5 case ALT(r1, r2) => nullable(r1) || nullable(r2)
6 case SEQ(r1, r2) => nullable(r1) && nullable(r2)
7 case STAR(_) => true
8 }
9

10 def der (c: Char, r: Rexp) : Rexp = r match {
11 case NULL => NULL
12 case EMPTY => NULL
13 case CHAR(d) => if (c == d) EMPTY else NULL
14 case ALT(r1, r2) => ALT(der(c, r1), der(c, r2))
15 case SEQ(r1, r2) =>
16 if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2))
17 else SEQ(der(c, r1), r2)
18 case STAR(r) => SEQ(der(c, r), STAR(r))
19 }
20

21 def ders (s: List[Char], r: Rexp) : Rexp = s match {
22 case Nil => r
23 case c::s => ders(s, der(c, r))
24 }
25

26 def matches(r: Rexp, s: String) : Boolean =
27 nullable(ders(s.toList, r))

Figure 1: Scala implementation of the nullable and derivatives functions.
These functions are easy to implement in functional languages, because pat-
tern matching and recursion allow us to mimic the mathematical definitions
very closely.

7

1: a
2: a · a
3: a · a · a

…
13: a · a · a · a · a · a · a · a · a · a · a · a · a

…

Our algorithm traverses such regular expressions at least once every time a
derivative is calculated. So having large regular expressions will cause prob-
lems. This problem is aggravated by a? being represented as a + ϵ.

We can however fix this by having an explicit constructor for r{n}. In Scala
we would introduce a constructor like

case class NTIMES(r: Rexp, n: Int) extends Rexp

With this fix we have a constant “size” regular expression for our running ex-
ample no maĴer how large n is. This means we have to also add cases for
NTIMES in the functions nullable and der. Does the change have any effect?

100 200 300 400 500 600 700 800 900 1,000
0
5

10
15
20
25
30

as

tim
e
in
se
cs

Python
Ruby
Scala V1
Scala V2

Now we are talking business! The modified matcher can within 30 seconds
handle regular expressions up to n = 950 before a StackOverflow is raised.

The moral is that our algorithm is rather sensitive to the size of regular ex-
pressions it needs to handle. This is of course obvious because both nullable
and der frequently need to traverse the whole regular expression. There seems,
however, one more issue for making the algorithm run faster. The deriva-
tive function often produces “useless” ∅s and ϵs. To see this, consider r =
((a · b) + b)∗ and the following two derivatives

der a r = ((ϵ · b) +∅) · r
der b r = ((∅ · b) + ϵ) · r
der c r = ((∅ · b) +∅) · r

If we simplify them according to the simple rules from the beginning, we can
replace the right-hand sides by the smaller equivalent regular expressions

8

der a r ≡ b · r
der b r ≡ r
der c r ≡ ∅

I leave it to you to contemplate whether such a simplification can have any im-
pact on the correctness of our algorithm (will it change any answers?). Figure 2
gives a simplification function that recursively traverses a regular expression
and simplifies it according to the rules given at the beginning. There are only
rules for +, · and n-times (the laĴer because we added it in the second version
of our matcher). There is no rule for a star, because empirical data and also a
liĴle thought showed that simplifying under a star is a waste of computation
time. The simplification function will be called after every derivation. This ad-
ditional step removes all the “junk” the derivative function introduced. Does
this improve the speed? You bet!!

0 2,000 4,000 6,000 8,000 10,000 12,000
0
5

10
15
20
25
30

as

tim
e
in
se
cs Scala V2

Scala V3

9

1 def simp(r: Rexp): Rexp = r match {
2 case ALT(r1, r2) => {
3 val r1s = simp(r1)
4 val r2s = simp(r2)
5 (r1s, r2s) match {
6 case (NULL, _) => r2s
7 case (_, NULL) => r1s
8 case _ => if (r1s == r2s) r1s else ALT(r1s, r2s)
9 }
10 }
11 case SEQ(r1, r2) => {
12 val r1s = simp(r1)
13 val r2s = simp(r2)
14 (r1s, r2s) match {
15 case (NULL, _) => NULL
16 case (_, NULL) => NULL
17 case (EMPTY, _) => r2s
18 case (_, EMPTY) => r1s
19 case _ => SEQ(r1s, r2s)
20 }
21 }
22 case NTIMES(r, n) => NTIMES(simp(r), n)
23 case r => r
24 }
25

26 def ders (s: List[Char], r: Rexp) : Rexp = s match {
27 case Nil => r
28 case c::s => ders(s, simp(der(c, r)))
29 }

Figure 2: The simplification function andmodified ders-function; this function
now calls der first, but then tries to simplify the resulting derivative regular
expressions.

10

