
Compilers and
Formal Languages

Email: christian.urban at kcl.ac.uk
Office Hour: Thurdays 15 – 16
Location: N7.07 (North Wing, Bush House)
Slides & Progs: KEATS
Pollev: https://pollev.com/cfltutoratki576

1 Introduction, Languages 6 While-Language
2 Regular Expressions, Derivatives 7 Compilation, JVM
3 Automata, Regular Languages 8 Compiling Functional Languages
4 Lexing, Tokenising 9 Optimisations
5 Grammars, Parsing 10 LLVM

CFL 04, King’s College London – p. 1/51

TheGoal of this Course

Write a compiler

lexer parser code gen

Today a lexer.

CFL 04, King’s College London – p. 2/51

TheGoal of this Course

Write a compiler

lexer parser code gen

Today a lexer.

CFL 04, King’s College London – p. 2/51

lexing ⇒ recognising words (Stone of Rosetta)

Regular Expressions
In programming languages they are often used to
recognise:

operands, digits
identifiers
numbers (non-leading zeros)
keywords
comments

http://www.regexper.com

CFL 04, King’s College London – p. 3/51

http://www.regexper.com

Lexing: Test Case
write "Fib";
read n;
minus1 := 0;
minus2 := 1;
while n > 0 do {

temp := minus2;
minus2 := minus1 + minus2;
minus1 := temp;
n := n ‐ 1

};
write "Result";
write minus2

CFL 04, King’s College London – p. 4/51

"if true then then 42 else +"
KEYWORD:

if, then, else,
WHITESPACE:

" ", \n,
IDENTIFIER:

LETTER · (LETTER + DIGIT + _)∗

NUM:
(NONZERODIGIT · DIGIT∗) + 0

OP:
+, ‐, *, %, <, <=

COMMENT:
/* · ∼(ALL∗ · (*/) · ALL∗) · */

CFL 04, King’s College London – p. 5/51

"if true then then 42 else +"
KEYWORD(if),
WHITESPACE,
IDENT(true),
WHITESPACE,
KEYWORD(then),
WHITESPACE,
KEYWORD(then),
WHITESPACE,
NUM(42),
WHITESPACE,
KEYWORD(else),
WHITESPACE,
OP(+)

CFL 04, King’s College London – p. 6/51

"if true then then 42 else +"
KEYWORD(if),
IDENT(true),
KEYWORD(then),
KEYWORD(then),
NUM(42),
KEYWORD(else),
OP(+)

CFL 04, King’s College London – p. 6/51

There is one small problem with the tokenizer. How
should we tokenize…?

"x‐3"

ID: …
OP:

"+", "‐"
NUM:

(NONZERODIGIT · DIGIT∗) + "0"
NUMBER:

NUM + ("‐" · NUM)

CFL 04, King’s College London – p. 7/51

The same problem with

(ab+ a) · (c+ bc)

and the string abc.

Or, keywords are if etc and identifiers are letters
followed by “letters + numbers + _”∗

if iffoo

CFL 04, King’s College London – p. 8/51

The same problem with

(ab+ a) · (c+ bc)

and the string abc.

Or, keywords are if etc and identifiers are letters
followed by “letters + numbers + _”∗

if iffoo

CFL 04, King’s College London – p. 8/51

POSIX: Two Rules
Longest match rule (“maximal munch rule”): The
longest initial substring matched by any regular
expression is taken as the next token.

Rule priority: For a particular longest initial
substring, the first regular expression that can
match determines the token.

most posix matchers are buggy
http://www.haskell.org/haskellwiki/Regex_Posix

traditional lexers are fast, but hairy

CFL 04, King’s College London – p. 9/51

http://www.haskell.org/haskellwiki/Regex_Posix

POSIX: Two Rules
Longest match rule (“maximal munch rule”): The
longest initial substring matched by any regular
expression is taken as the next token.

Rule priority: For a particular longest initial
substring, the first regular expression that can
match determines the token.

most posix matchers are buggy
http://www.haskell.org/haskellwiki/Regex_Posix

traditional lexers are fast, but hairy

CFL 04, King’s College London – p. 9/51

http://www.haskell.org/haskellwiki/Regex_Posix

POSIX: Two Rules
Longest match rule (“maximal munch rule”): The
longest initial substring matched by any regular
expression is taken as the next token.

Rule priority: For a particular longest initial
substring, the first regular expression that can
match determines the token.

most posix matchers are buggy
http://www.haskell.org/haskellwiki/Regex_Posix

traditional lexers are fast, but hairy

CFL 04, King’s College London – p. 9/51

http://www.haskell.org/haskellwiki/Regex_Posix

Sulzmann& LuMatcher

We want to match the string abc using r1:

r1 r2
der a

r3
der b

r4
der c

nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

CFL 04, King’s College London – p. 10/51

Sulzmann& LuMatcher

We want to match the string abc using r1:

r1 r2
der a

r3
der b

r4
der c

nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

CFL 04, King’s College London – p. 10/51

Sulzmann& LuMatcher

We want to match the string abc using r1:

r1 r2
der a

r3
der b

r4
der c

nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

CFL 04, King’s College London – p. 10/51

Sulzmann& LuMatcher

We want to match the string abc using r1:

r1 r2
der a

r3
der b

r4
der c

nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

CFL 04, King’s College London – p. 10/51

Sulzmann& LuMatcher

We want to match the string abc using r1:

r1 r2
der a

r3
der b

r4
der c

nullable?

v4

v3
inj c

v2
inj b

v1
inj a

mkeps

CFL 04, King’s College London – p. 10/51

Sulzmann& LuMatcher

We want to match the string abc using r1:

r1 r2
der a

r3
der b

r4
der c

nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

CFL 04, King’s College London – p. 10/51

Sulzmann& LuMatcher

We want to match the string abc using r1:

r1 r2
der a

r3
der b

r4
der c

nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

CFL 04, King’s College London – p. 10/51

Sulzmann& LuMatcher

We want to match the string abc using r1:

r1 r2
der a

r3
der b

r4
der c

nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

CFL 04, King’s College London – p. 10/51

Sulzmann& LuMatcher

We want to match the string abc using r1:

r1 r2
der a

r3
der b

r4
der c

nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

CFL 04, King’s College London – p. 10/51

Regexes and Values
Regular expressions and their corresponding values:

r ::= 0
| 1
| c
| r1 · r2
| r1 + r2

| r∗

v ::=
Empty

| Char(c)
| Seq(v1, v2)
| Left(v)
| Right(v)
| Stars []
| Stars [v1, . . . vn]

CFL 04, King’s College London – p. 11/51

abstract class Rexp
case object ZERO extends Rexp
case object ONE extends Rexp
case class CHAR(c: Char) extends Rexp
case class ALT(r1: Rexp, r2: Rexp) extends Rexp
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
case class STAR(r: Rexp) extends Rexp

abstract class Val
case object Empty extends Val
case class Chr(c: Char) extends Val
case class Sequ(v1: Val, v2: Val) extends Val
case class Left(v: Val) extends Val
case class Right(v: Val) extends Val
case class Stars(vs: List[Val]) extends Val

CFL 04, King’s College London – p. 12/51

CFL 04, King’s College London – p. 13/51

r1 r2
der a

r3
der b

r4
der c

nullable

v4v3
inj c

v2
inj b

v1
inj a

mkeps

r1: a · (b · c)
r2: 1 · (b · c)
r3: (0 · (b · c)) + (1 · c)
r4: (0 · (b · c)) + ((0 · c) + 1)

CFL 04, King’s College London – p. 13/51

r1 r2
der a

r3
der b

r4
der c

nullable

v4v3
inj c

v2
inj b

v1
inj a

mkeps

r1: a · (b · c)
r2: 1 · (b · c)
r3: (0 · (b · c)) + (1 · c)
r4: (0 · (b · c)) + ((0 · c) + 1)

v1: Seq(Char(a), Seq(Char(b), Char(c)))
v2: Seq(Empty, Seq(Char(b), Char(c)))
v3: Right(Seq(Empty, Char(c)))
v4: Right(Right(Empty))

Flatten
Obtaining the string underlying a value:

|Empty| def
= []

|Char(c)| def
= [c]

|Left(v)| def
= |v|

|Right(v)| def
= |v|

|Seq(v1, v2)|
def
= |v1|@ |v2|

|Stars [v1, . . . , vn]|
def
= |v1|@ . . . @ |vn|

CFL 04, King’s College London – p. 14/51

CFL 04, King’s College London – p. 15/51

r1 r2
der a

r3
der b

r4
der c

nullable

v4v3
inj c

v2
inj b

v1
inj a

mkeps

r1: a · (b · c)
r2: 1 · (b · c)
r3: (0 · (b · c)) + (1 · c)
r4: (0 · (b · c)) + ((0 · c) + 1)

v1: Seq(Char(a), Seq(Char(b), Char(c)))
v2: Seq(Empty, Seq(Char(b), Char(c)))
v3: Right(Seq(Empty, Char(c)))
v4: Right(Right(Empty))

|v1|: abc
|v2|: bc
|v3|: c
|v4|: []

Mkeps
Finding a (posix) value for recognising the empty
string:

mkeps (1) def
= Empty

mkeps (r1 + r2)
def
= if nullable(r1)

then Left(mkeps(r1))
else Right(mkeps(r2))

mkeps (r1 · r2)
def
= Seq(mkeps(r1),mkeps(r2))

mkeps (r∗) def
= Stars []

CFL 04, King’s College London – p. 16/51

Inject

r rder
der c

vderv
inj c

?

CFL 04, King’s College London – p. 17/51

Inject
Injecting (“Adding”) a character to a value

inj (c) c (Empty) def
= Char c

inj (r1 + r2) c (Left(v))
def
= Left(inj r1 c v)

inj (r1 + r2) c (Right(v))
def
= Right(inj r2 c v)

inj (r1 · r2) c (Seq(v1, v2))
def
= Seq(inj r1 c v1, v2)

inj (r1 · r2) c (Left(Seq(v1, v2)))
def
= Seq(inj r1 c v1, v2)

inj (r1 · r2) c (Right(v))
def
= Seq(mkeps(r1), inj r2 c v)

inj (r∗) c (Seq(v, Stars vs)) def
= Stars (inj r c v :: vs)

inj: 1st arg 7→ a rexp; 2nd arg 7→ a character; 3rd arg 7→ a value
result 7→ a value

CFL 04, King’s College London – p. 18/51

inj (c) c (Empty) def
= Char c

CFL 04, King’s College London – p. 19/51

inj (r1 + r2) c (Left(v))
def
= Left(inj r1 c v)

inj (r1 + r2) c (Right(v))
def
= Right(inj r2 c v)

CFL 04, King’s College London – p. 20/51

inj (r1 · r2) c (Seq(v1, v2))
def
= Seq(inj r1 c v1, v2)

inj (r1 · r2) c (Left(Seq(v1, v2)))
def
= Seq(inj r1 c v1, v2)

inj (r1 · r2) c (Right(v))
def
= Seq(mkeps(r1), inj r2 c v)

CFL 04, King’s College London – p. 21/51

der c (r1 · r2)
def
= if nullable(r1) then (der c r1) · r2 + der c r2 else (der c r1) · r2

inj (r∗) c (Seq(v, Stars vs)) def
= Stars (inj r c v :: vs)

CFL 04, King’s College London – p. 22/51

Lexing

lex r [] def
= if nullable(r) thenmkeps(r) else error

lex r a :: s def
= inj r a lex(der(a, r), s)

lex: returns a value

r1 r2
der a

r3
der b

r4
der c nullable

v4v3
inj c

v2
inj b

v1
inj a

mkeps

CFL 04, King’s College London – p. 23/51

Records

new regex: (x : r) new value: Rec(x, v)

nullable(x : r) def
= nullable(r)

der c (x : r) def
= der c r

mkeps(x : r) def
= Rec(x,mkeps(r))

inj (x : r) c v def
= Rec(x, inj r c v)

for extracting subpatterns (z : ((x : ab) + (y : ba))

CFL 04, King’s College London – p. 24/51

(id : rid)
(key : rkey)

Records

new regex: (x : r) new value: Rec(x, v)

nullable(x : r) def
= nullable(r)

der c (x : r) def
= der c r

mkeps(x : r) def
= Rec(x,mkeps(r))

inj (x : r) c v def
= Rec(x, inj r c v)

for extracting subpatterns (z : ((x : ab) + (y : ba))

CFL 04, King’s College London – p. 24/51

(id : rid)
(key : rkey)

Records

new regex: (x : r) new value: Rec(x, v)

nullable(x : r) def
= nullable(r)

der c (x : r) def
= der c r

mkeps(x : r) def
= Rec(x,mkeps(r))

inj (x : r) c v def
= Rec(x, inj r c v)

for extracting subpatterns (z : ((x : ab) + (y : ba))

CFL 04, King’s College London – p. 24/51

(id : rid)
(key : rkey)

A regular expression for email addresses
(name: [a-z0-9__ .−]+)·@·

(domain: [a-z0-9−]+) ·.·
(top_level: [a-z .]{2,6})

christian.urban@kcl.ac.uk

the result environment:
[(name : christian.urban),
(domain : kcl),
(top_level : ac.uk)]

CFL 04, King’s College London – p. 25/51

While Tokens

WHILE_REGS
def
= (("k" : KEYWORD) +

("i" : ID) +
("o" : OP) +
("n" : NUM) +
("s" : SEMI) +
("p" : (LPAREN + RPAREN)) +
("b" : (BEGIN + END)) +
("w" : WHITESPACE))∗

CFL 04, King’s College London – p. 26/51

Simplification
If we simplify after the derivative, then we are
building the value for the simplified regular
expression, but not for the original regular
expression.

r1 r2
der a

r3
der b

r4
der c

nullable

v4v3
inj c

v2
inj b

v1
inj a

mkeps

(0 · (b · c)) + ((0 · c) + 1) 7→ 1

CFL 04, King’s College London – p. 27/51

Simplification
If we simplify after the derivative, then we are
building the value for the simplified regular
expression, but not for the original regular
expression.

r1 r2
der a

r3
der b

r4
der c

nullable

v4v3
inj c

v2
inj b

v1
inj a

mkeps

(0 · (b · c)) + ((0 · c) + 1) 7→ 1
CFL 04, King’s College London – p. 27/51

Normally we would have

(0 · (b · c)) + ((0 · c) + 1)

and answer how this regular expression matches the
empty string with the value

Right(Right(Empty))

But now we simplify this to 1 and would produce
Empty (seemkeps).

CFL 04, King’s College London – p. 28/51

Rectification
rectification
functions:

r · 0 7→ 0
0 · r 7→ 0
r · 1 7→ r λf1 f2 v. Seq(f1 v, f2 Empty)
1 · r 7→ r λf1 f2 v. Seq(f1 Empty, f2 v)
r+ 0 7→ r λf1 f2 v. Left(f1 v)
0+ r 7→ r λf1 f2 v. Right(f2 v)
r+ r 7→ r λf1 f2 v. Left(f1 v)

old simp returns a rexp;
new simp returns a rexp and a rectification function.

CFL 04, King’s College London – p. 29/51

Rectification
rectification
functions:

r · 0 7→ 0
0 · r 7→ 0
r · 1 7→ r λf1 f2 v. Seq(f1 v, f2 Empty)
1 · r 7→ r λf1 f2 v. Seq(f1 Empty, f2 v)
r+ 0 7→ r λf1 f2 v. Left(f1 v)
0+ r 7→ r λf1 f2 v. Right(f2 v)
r+ r 7→ r λf1 f2 v. Left(f1 v)

old simp returns a rexp;
new simp returns a rexp and a rectification function.

CFL 04, King’s College London – p. 29/51

Rectification _+ _
simp(r):

case r = r1 + r2
let (r1s, f1s) = simp(r1)

(r2s, f2s) = simp(r2)
case r1s = 0: return (r2s, λv. Right(f2s(v)))
case r2s = 0: return (r1s, λv. Left(f1s(v)))
case r1s = r2s: return (r1s, λv. Left(f1s(v)))
otherwise: return (r1s + r2s, falt(f1s, f2s))

falt(f1, f2)
def
=

λv. case v = Left(v′): return Left(f1(v′))
case v = Right(v′): return Right(f2(v′))

CFL 04, King’s College London – p. 30/51

def simp(r: Rexp): (Rexp, Val => Val) = r match {
case ALT(r1, r2) => {

val (r1s, f1s) = simp(r1)
val (r2s, f2s) = simp(r2)
(r1s, r2s) match {

case (ZERO, _) => (r2s, F_RIGHT(f2s))
case (_, ZERO) => (r1s, F_LEFT(f1s))
case _ =>

if (r1s == r2s) (r1s, F_LEFT(f1s))
else (ALT (r1s, r2s), F_ALT(f1s, f2s))

}
}
...

}
def F_RIGHT(f: Val => Val) = (v:Val) => Right(f(v))
def F_LEFT(f: Val => Val) = (v:Val) => Left(f(v))
def F_ALT(f1: Val => Val, f2: Val => Val) =

(v:Val) => v match {
case Right(v) => Right(f2(v))
case Left(v) => Left(f1(v)) }

CFL 04, King’s College London – p. 31/51

Rectification _ · _
simp(r):…

case r = r1 · r2
let (r1s, f1s) = simp(r1)

(r2s, f2s) = simp(r2)
case r1s = 0: return (0, ferror)
case r2s = 0: return (0, ferror)
case r1s = 1: return (r2s, λv. Seq(f1s(Empty), f2s(v)))
case r2s = 1: return (r1s, λv. Seq(f1s(v), f2s(Empty)))
otherwise: return (r1s · r2s, fseq(f1s, f2s))

fseq(f1, f2)
def
=

λv. case v = Seq(v1, v2): return Seq(f1(v1), f2(v2))
CFL 04, King’s College London – p. 32/51

def simp(r: Rexp): (Rexp, Val => Val) = r match {
case SEQ(r1, r2) => {

val (r1s, f1s) = simp(r1)
val (r2s, f2s) = simp(r2)
(r1s, r2s) match {

case (ZERO, _) => (ZERO, F_ERROR)
case (_, ZERO) => (ZERO, F_ERROR)
case (ONE, _) => (r2s, F_SEQ_Empty1(f1s, f2s))
case (_, ONE) => (r1s, F_SEQ_Empty2(f1s, f2s))
case _ => (SEQ(r1s,r2s), F_SEQ(f1s, f2s))

}
}
...}

def F_SEQ_Empty1(f1: Val => Val, f2: Val => Val) =
(v:Val) => Sequ(f1(Empty), f2(v))

def F_SEQ_Empty2(f1: Val => Val, f2: Val => Val) =
(v:Val) => Sequ(f1(v), f2(Empty))

def F_SEQ(f1: Val => Val, f2: Val => Val) =
(v:Val) => v match {

case Sequ(v1, v2) => Sequ(f1(v1), f2(v2)) }
CFL 04, King’s College London – p. 33/51

Rectification Example
(b · c) + (0+ 1) 7→ (b · c) + 1

fs1 = λv.v
fs2 = λv.Right(v)

CFL 04, King’s College London – p. 34/51

Rectification Example
(b · c) + (0+ 1) 7→ (b · c) + 1

fs1 = λv.v
fs2 = λv.Right(v)

CFL 04, King’s College London – p. 34/51

Rectification Example
(b · c) + (0+ 1) 7→ (b · c) + 1

fs1 = λv.v
fs2 = λv.Right(v)

CFL 04, King’s College London – p. 34/51

Rectification Example
(b · c) + (0+ 1) 7→ (b · c) + 1

fs1 = λv.v
fs2 = λv.Right(v)

falt(fs1, fs2)
def
=

λv. case v = Left(v′): return Left(fs1(v′))
case v = Right(v′): return Right(fs2(v′))

CFL 04, King’s College London – p. 34/51

Rectification Example
(b · c) + (0+ 1) 7→ (b · c) + 1

fs1 = λv.v
fs2 = λv.Right(v)

λv. case v = Left(v′): return Left(v′)
case v = Right(v′): return Right(Right(v′))

CFL 04, King’s College London – p. 34/51

Rectification Example
(b · c) + (0+ 1) 7→ (b · c) + 1

fs1 = λv.v
fs2 = λv.Right(v)

λv. case v = Left(v′): return Left(v′)
case v = Right(v′): return Right(Right(v′))

mkeps simplified case: Right(Empty)
rectified case: Right(Right(Empty))

CFL 04, King’s College London – p. 34/51

Lexing with Simplification
lex r [] def

= if nullable(r) thenmkeps(r) else error
lex r c :: s def

= let (r′, frect) = simp(der(c, r))
inj r c (frect(lex(r′, s)))

r1 r2
der a

r3
der b

r4
der c

nullable

v4v3
inj c

v2
inj b

v1
inj a

mkeps

CFL 04, King’s College London – p. 35/51

Environments
Obtaining the “recorded” parts of a value:

env(Empty) def
= []

env(Char(c)) def
= []

env(Left(v))
def
= env(v)

env(Right(v)) def
= env(v)

env(Seq(v1, v2))
def
= env(v1)@ env(v2)

env(Stars [v1, . . . , vn])
def
= env(v1)@ . . . @ env(vn)

env(Rec(x : v)) def
= (x : |v|) :: env(v)

CFL 04, King’s College London – p. 36/51

While Tokens

WHILE_REGS
def
= (("k" : KEYWORD) +

("i" : ID) +
("o" : OP) +
("n" : NUM) +
("s" : SEMI) +
("p" : (LPAREN + RPAREN)) +
("b" : (BEGIN + END)) +
("w" : WHITESPACE))∗

CFL 04, King’s College London – p. 37/51

"if true then then 42 else +"

KEYWORD(if),
WHITESPACE,
IDENT(true),
WHITESPACE,
KEYWORD(then),
WHITESPACE,
KEYWORD(then),
WHITESPACE,
NUM(42),
WHITESPACE,
KEYWORD(else),
WHITESPACE,
OP(+)

CFL 04, King’s College London – p. 38/51

"if true then then 42 else +"

KEYWORD(if),
IDENT(true),
KEYWORD(then),
KEYWORD(then),
NUM(42),
KEYWORD(else),
OP(+)

CFL 04, King’s College London – p. 38/51

Lexer: Two Rules

Longest match rule (“maximal munch rule”): The
longest initial substring matched by any regular
expression is taken as next token.

Rule priority: For a particular longest initial
substring, the first regular expression that can
match determines the token.

CFL 04, King’s College London – p. 39/51

Environments
Obtaining the “recorded” parts of a value:

env(Empty) def
= []

env(Char(c)) def
= []

env(Left(v))
def
= env(v)

env(Right(v)) def
= env(v)

env(Seq(v1, v2))
def
= env(v1)@ env(v2)

env(Stars[v1, . . . , vn])
def
= env(v1)@ . . . @ env(vn)

env(Rec(x : v)) def
= (x : |v|) :: env(v)

CFL 04, King’s College London – p. 40/51

While Tokens

WHILE_REGS
def
= (("k" : KEYWORD) +

("i" : ID) +
("o" : OP) +
("n" : NUM) +
("s" : SEMI) +
("p" : (LPAREN + RPAREN)) +
("b" : (BEGIN + END)) +
("w" : WHITESPACE))∗

CFL 04, King’s College London – p. 41/51

"if true then then 42 else +"

KEYWORD(if),
WHITESPACE,
IDENT(true),
WHITESPACE,
KEYWORD(then),
WHITESPACE,
KEYWORD(then),
WHITESPACE,
NUM(42),
WHITESPACE,
KEYWORD(else),
WHITESPACE,
OP(+)

CFL 04, King’s College London – p. 42/51

"if true then then 42 else +"

KEYWORD(if),
IDENT(true),
KEYWORD(then),
KEYWORD(then),
NUM(42),
KEYWORD(else),
OP(+)

CFL 04, King’s College London – p. 42/51

CFL 04, King’s College London – p. 43/51

CFL 04, King’s College London – p. 43/51

CFL 04, King’s College London – p. 43/51

CFL 04, King’s College London – p. 43/51

CFL 04, King’s College London – p. 43/51

CFL 04, King’s College London – p. 43/51

CFL 04, King’s College London – p. 43/51

CFL 04, King’s College London – p. 43/51

CFL 04, King’s College London – p. 43/51

CFL 04, King’s College London – p. 43/51

CFL 04, King’s College London – p. 43/51

CFL 04, King’s College London – p. 43/51

CFL 04, King’s College London – p. 43/51

CFL 04, King’s College London – p. 43/51

CFL 04, King’s College London – p. 43/51

CFL 04, King’s College London – p. 43/51

CFL 04, King’s College London – p. 43/51

CFL 04, King’s College London – p. 43/51

CFL 04, King’s College London – p. 43/51

CFL 04, King’s College London – p. 43/51

CFL 04, King’s College London – p. 43/51

CFL 04, King’s College London – p. 43/51

CFL 04, King’s College London – p. 43/51

CFL 04, King’s College London – p. 43/51

CFL 04, King’s College London – p. 43/51

CFL 04, King’s College London – p. 43/51

CFL 04, King’s College London – p. 43/51

CFL 04, King’s College London – p. 43/51

CFL 04, King’s College London – p. 44/51

CFL 04, King’s College London – p. 45/51

CFL 04, King’s College London – p. 46/51

• I’m impressed by the speed of the answers on KEATS, even
on weekends. It’s amazing. Obviously, the lecturer cares
about the students.

• The handouts and materials on KEATS are very helpful and
your explanation is easy to understand especially after both
reading the handout and watch the lectures. The LGT is also
engaging and I will try my best to engage more. I am actually
already impressed by your teaching since 5CCS2PEP.

• I believe the module is great, if possible, it would be nice to
have a small handout that recaps Scala syntax from PEP last
year.

CFL 04, King’s College London – p. 47/51

• I’m impressed by the speed of the answers on KEATS, even
on weekends. It’s amazing. Obviously, the lecturer cares
about the students.

• The handouts and materials on KEATS are very helpful and
your explanation is easy to understand especially after both
reading the handout and watch the lectures. The LGT is also
engaging and I will try my best to engage more. I am actually
already impressed by your teaching since 5CCS2PEP.

• I believe the module is great, if possible, it would be nice to
have a small handout that recaps Scala syntax from PEP last
year.

CFL 04, King’s College London – p. 47/51

• I’m impressed by the speed of the answers on KEATS, even
on weekends. It’s amazing. Obviously, the lecturer cares
about the students.

• The handouts and materials on KEATS are very helpful and
your explanation is easy to understand especially after both
reading the handout and watch the lectures. The LGT is also
engaging and I will try my best to engage more. I am actually
already impressed by your teaching since 5CCS2PEP.

• I believe the module is great, if possible, it would be nice to
have a small handout that recaps Scala syntax from PEP last
year.

CFL 04, King’s College London – p. 47/51

• While I understand you want people to attend the small
groups, not providing the solutions to the homework
exercises disadvantages those with disabilities (e.g.
processing difficulties) as most students take notes of the
solutions during the SGTs, and those of us who are unable to
do so cannot obtain the full benefit of the sessions. Even if
the exam is based on those questions, it is closed-book
anyway, so there is no harm in providing the answers. At
least allow the TAs to give the solutions to those who attend
the SGTs please?

• Really enjoy the content, but would appreciate uploads of
the tutorial answers as sometimes we do not have time to go
through all of them in the SGTs.

CFL 04, King’s College London – p. 48/51

• CFL is a very interesting module and the LGTs are helpful to
consolidate information. The homeworks and courseworks
are useful for learning the content. My only criticism is that
it feels like there is too much content crammed into each
week. Between the time taken each week by 2h LGT, 1h SGT,
3-4h of videos, 1-2h homework and time for courseworks, I
find it difficult making time for all aspects of this module
each week.

CFL 04, King’s College London – p. 49/51

• i like this course

• I could learn the material better if the LGTs could somehow
be recorded because I’ve sometimes felt a need to go back to
them while revising stuff

• I feel that, as with most modules, there is a lot happening at
once. Since we only went through the first coursework it’s
too early to call, but the workload tends to pile up. I
understand it’s in the nature of the module, and the work,
though difficult, is enjoyable, but there’s gotta be a way to
mitigate this. Other than that, I am enjoying this module
and you, Chris, are a great lecturer!

CFL 04, King’s College London – p. 50/51

• Strongly advise you, the lecturer, to take into account that
your students have not been studying the subject for as long
as you have. Also, that some of us are still waiting to be
convinced of the interesting-ness and relevance of the
subject, which you often fail to mention in the sessions and
in the videos. I find myself lost trying to find a context for
the things we are learning.

…

I thoroughly enjoy the SGTS where my concerns and
questions are welcomed. But I feel uncomfortable to ask you
questions in your LGTs because of the way I have heard you
respond to other students.

CFL 04, King’s College London – p. 51/51

