
Homework 9

1. Describe what is meant by eliminating tail recursion? When can this opti-
mization be applied and why is it of benefit?

2. A programming language has arithmetic expression. For an arithmetic
expression the compiler of this language produces the following snippet
of JVM code.

ldc 1
ldc 2
ldc 3
imul
ldc 4
ldc 3
isub
iadd
iadd

Give the arithmetic expression that produced this code. Make sure you
give all necessary parentheses.

3. Describe what the following JVM instructions do!

ldc 3
iload 3
istore 1
ifeq label
if_icmpge label

4. What does the following JVM function calculate?

1

.method public static bar(I)I

.limit locals 1

.limit stack 9
iload 0
ldc 0
if_icmpne If_else_8
ldc 0
goto If_end_9

If_else_8:
iload 0
ldc 1
if_icmpne If_else_10
ldc 1
goto If_end_11

If_else_10:
iload 0
ldc 1
isub
invokestatic bar(I)I
iload 0
ldc 2
isub
invokestatic bar(I)I
iadd

If_end_11:
If_end_9:

ireturn
.end method

5. What does the following LLVM function calculate? Give the correspond-
ing arithmetic expression .

define i32 @foo(i32 %a, i32 %b) {
%1 = mul i32 %a, %a
%2 = mul i32 %a, 2
%3 = mul i32 %2, %b
%4 = add i32 %1, %3
%5 = mul i32 %b, %b
%6 = add i32 %5, %4
ret i32 %6

}

6. As an optimisation technique, a compilermightwant to detect ‘dead code’
and not generate anything for this code. Why does this optimisation tech-
nique have the potential of speeding up the run-time of a program? (Hint:

2

On what CPUs are programs run nowadays?)

7. In an earlier question, we analysed the advantages of having a lexer-phase
before running the parser (having a lexer is definitely a good thing to
have). But you might wonder if a lexer can also be implemented by a
parser and some simple grammar rules. Consider for example:

S ::= (Kw | Id |Ws) · S | ε

Kw ::= if | then | . . .

Id ::= (a | . . . | z) · Id | ε

Ws ::= . . .

What is wrong with implementing a lexer in this way?

8. What is the difference between a parse tree and an abstract syntax tree?
Give some simple examples for each of them.

9. Give a description of how the Brzozowski matcher works. The descrip-
tion should be coherent and logical.

10. Give a description of how a compiler for the While-language can be im-
plemented. You should assume you are producing code for the JVM. The
description should be coherent and logical.

11. (Optional) This question is for you to provide regular feedback to me:
for example what were the most interesting, least interesting, or confus-
ing parts in this lecture? Any problems with my Scala code? Please feel
free to share any other questions or concerns. Also, all my material is
crap imperfect. If you have any suggestions for improvement, I am very
grateful to hear.

If *you* want to share anything (code, videos, links), you are encouraged
to do so. Just drop me an email or send a message to the Forum.

3

