
Handout 2

Having specified what problem our matching algorithm, match, is supposed to
solve, namely for a given regular expression r and string s answer true if and
only if

s ∈ L(r)

Clearly we cannot use the function L directly in order to solve this problem,
because in general the set of strings L returns is infinite (recall what L(a∗) is).
In such cases there is no algorithm then can test exhaustively, whether a string
is member of this set.

The algorithm we define below consists of two parts. One is the function
nullable which takes a regular expression as argument and decides whether it
can match the empty string (this means it returns a boolean). This can be easily
defined recursively as follows:

nullable(∅)
def
= false

nullable(ϵ)
def
= true

nullable(c)
def
= false

nullable(r1 + r2)
def
= nullable(r1) ∨ nullable(r2)

nullable(r1 · r2)
def
= nullable(r1) ∧ nullable(r2)

nullable(r∗)
def
= true

The idea behind this function is that the following property holds:

nullable(r) if and only if ”” ∈ L(r)

On the left-hand side we have a function we can implement; on the right we
have its specification.

The other function is calculating a derivative of a regular expression. This
is a function which will take a regular expression, say r, and a character, say
c, as argument and return a new regular expression. Beware that the intuition
behind this function is not so easy to grasp on first reading. Essentially this
function solves the following problem: if r can match a string of the form c ::s,
what does the regular expression look like that can match just s. The definition
of this function is as follows:

der c (∅)
def
= ∅

der c (ϵ)
def
= ∅

der c (d)
def
= if c = d then ϵ else ∅

der c (r1 + r2)
def
= der c r1 + der c r2

der c (r1 · r2)
def
= if nullable(r1)

then (der c r1) · r2 + der c r2
else (der c r1) · r2

der c (r∗)
def
= (der c r) · (r∗)

1

The first two clauses can be rationalised as follows: recall that der should calcu-
late a regular expression, if the “input” regular expression can match a string of
the form c ::s. Since neither ∅ nor ϵ can match such a string we return ∅. In the
third case we have to make a case-distinction: In case the regular expression
is c, then clearly it can recognise a string of the form c :: s, just that s is the
empty string. Therefore we return the ϵ-regular expression. In the other case
we again return ∅ since no string of the c :: s can be matched. The +-case is
relatively straightforward: all strings of the form c ::s are either matched by the
regular expression r1 or r2. So we just have to recursively call der with these
two regular expressions and compose the results again with +. The ·-case is
more complicated: if r1 · r2 matches a string of the form c ::s, then the first part
must be matched by r1. Consequently, it makes sense to construct the regular
expression for s by calling der with r1 and “appending” r2. There is however
one exception to this simple rule: if r1 can match the empty string, then all of
c :: s is matched by r2. So in case r1 is nullable (that is can match the empty
string) we have to allow the choice der c r2 for calculating the regular expres-
sion that can match s. The ∗-case is again simple: if r∗ matches a string of the
form c ::s, then the first part must be “matched” by a single copy of r. Therefore
we call recursively der c r and “append” r∗ in order to match the rest of s.

Another way to rationalise the definition of der is to consider the following
operation on sets:

Der cA
def
= {s | c ::s ∈ A}

which essentially transforms a set of strings A by filtering out all strings that
do not start with c and then strip off the c from all the remaining strings. For
example suppose A = {”foo”, ”bar”, ”frak”} then

Der f A = {”oo”, ”rak”} , Der bA = {”ar”} and Der aA = ∅

Note that in the last case Der is empty, because no string in A starts with a.
With this operation we can state the following property about der:

L(der c r) = Der c (L(r))

This property clarifies what regular expression der calculates, namely take the
set of strings that r can match (L(r)), filter out all strings not starting with c
and strip off the c from the remaining strings—this is exactly the language that
der c r can match.

For our matching algorithm we need to lift the notion of derivatives from
characters to strings. This can be done using the following function, taking a
string and regular expression as input and a regular expression as output.

ders [] r
def
= r

ders (c ::s) r
def
= ders s (der c r)

Having ders in place, we can finally define our matching algorithm:

2

match s r = nullable(ders s r)

We claim that

match s r if and only if s ∈ L(r)

holds, which means our algorithm satisfies the specification. This algorithm can
be easily extended for other regular expressions such as r{n}, r?, ∼ r and so on.

3

1 def nullable (r: Rexp) : Boolean = r match {

2 case NULL => false

3 case EMPTY => true

4 case CHAR(_) => false

5 case ALT(r1 , r2) => nullable(r1) || nullable(r2)

6 case SEQ(r1 , r2) => nullable(r1) && nullable(r2)

7 case STAR(_) => true

8 }

1 def der (r: Rexp , c: Char) : Rexp = r match {

2 case NULL => NULL

3 case EMPTY => NULL

4 case CHAR(d) => if (c == d) EMPTY else NULL

5 case ALT(r1 , r2) => ALT(der(r1, c), der(r2 , c))

6 case SEQ(r1 , r2) =>

7 if (nullable(r1)) ALT(SEQ(der(r1, c), r2), der(r2 , c))

8 else SEQ(der(r1 , c), r2)

9 case STAR(r) => SEQ(der(r, c), STAR(r))

10 }

11

12 def ders (s: List[Char], r: Rexp) : Rexp = s match {

13 case Nil => r

14 case c::s => ders(s, der(c, r))

15 }

Figure 1: Scala implementation of the nullable and derivatives functions.

4

