
Coursework 1 (Update for 2024: CW is OPTIONAL

but recommended)

Task

The task is to implement a regular expression matcher based on derivatives of
regular expressions. The implementation should be able to deal with the usual
(basic) regular expressions

0, 1, c, r1 + r2, r1 · r2, r∗

but also with the following extended regular expressions:

[c1, c2, . . . , cn] a set of characters—for character ranges
r+ one or more times r
r? optional r
r1 & r2 intersection (matched by both r1 and r2)

r{n} exactly n-times

r{..m} zero or more times r but no more than m-times

r{n..} at least n-times r
r{n..m} at least n-times r but no more than m-times
∼ r not-regular-expression of r

You can assume that n and m are greater or equal than 0. In the case of r{n,m}

you can also assume 0 ≤ n ≤ m.

Important! Your implementation should have explicit case classes for the ba-
sic regular expressions, but also explicit case classes for the extended regular
expressions.1 That means do not treat the extended regular expressions by just
translating them into the basic ones. See also Question 1, where you are asked
to explicitly give the rules for nullable and der for the extended regular expres-
sions. Something like

der c (r+) def
= der c (r · r∗)

is not allowed as answer in Question 1 and not allowed in your code.

The meanings of the extended regular expressions are

1Please call them RANGE, PLUS, OPTIONAL, INTER, NTIMES, UPTO, FROM and BETWEEN.

1

L([c1, c2, . . . , cn])
def
= {[c1], [c2], . . . , [cn]}

L(r+) def
=

⋃
1≤i . L(r)i

L(r?)
def
= L(r) ∪ {[]}

L(r1 & r2)
def
= L(r1) ∩ L(r2)

L(r{n})
def
= L(r)n

L(r{..m})
def
=

⋃
0≤i≤m . L(r)i

L(r{n..})
def
=

⋃
n≤i . L(r)i

L(r{n..m})
def
=

⋃
n≤i≤m . L(r)i

L(∼ r) def
= Σ∗ − L(r)

whereby in the last clause the set Σ∗ stands for the set of all strings over the
alphabet Σ (in the implementation the alphabet can be just what is represented
by, say, the type Char). So ∼ r means in effect “all the strings that r cannot
match”.

Be careful that your implementation of nullable and der satisfies for every regu-
lar expression r the following two properties (see also Question 1):

• nullable(r) if and only if [] ∈ L(r)

• L(der c r) = Der c (L(r))

Question 1

From the lectures you have seen the definitions for the functions nullable and
der for the basic regular expressions. Implement and write down the rules for
the extended regular expressions (see questionaire at the end).
Remember your definitions have to satisfy the two properties

• nullable(r) if and only if [] ∈ L(r)

• L(der c r)) = Der c (L(r))

Given the definitions of nullable and der, it is easy to implement a regular ex-
pression matcher. Test your regular expression matcher with (at least) the ex-
amples:

string a? ∼ a a{3} (a?){3} a{..3} (a?){..3} a{3..5} (a?){3..5}

[]

a
aa
aaa

aaaaa
aaaaaa

Does your matcher produce the expected results? Make sure you also test

corner-cases, like a{0}!

2

Question 2

As you can see, there are a number of explicit regular expressions that deal with
single or several characters, for example:

c matches a single character
[c1, c2, . . . , cn] matches a set of characters—for character ranges
ALL matches any character

The latter is useful for matching any string (for example by using ALL∗). In
order to avoid having an explicit constructor for each case, we can generalise
all these cases and introduce a single constructorCFUN(f)where f is a function
from characters to booleans. In Scala code this would look as follows:

abstract class Rexp
...
case class CFUN(f: Char => Boolean) extends Rexp

The idea is that the function f determineswhich character(s) arematched, namely
those where f returns true. In this question implement CFUN and define

nullable(CFUN(f)) def
= ?

der c (CFUN(f)) def
= ?

in your matcher and then also give definitions for

c def
= CFUN(?)

[c1, c2, . . . , cn]
def
= CFUN(?)

ALL
def
= CFUN(?)

You can either add the constructor CFUN to your implementation in Ques-
tion 3, or you can implement this questions first and then use CFUN instead of
RANGE and CHAR in Question 3. In an ideal world one would do this task first,
but this might confuse you with what you need to do in the previous question.

Question 3

Suppose [a-z0-9_ .-] stands for the regular expression

[a, b, c, . . . , z, 0, . . . , 9, _, ., -] .

Define in your code the following regular expression for email addresses

([a-z0-9_ .−]+) · @ · ([a-z0-9 .−]+) · . · ([a-z .]{2,6})

and calculate the derivative according to your own email address. When cal-
culating the derivative, simplify all regular expressions as much as possible by
applying the following 7 simplification rules:

3

r · 0 7→ 0
0 · r 7→ 0
r · 1 7→ r
1 · r 7→ r
r + 0 7→ r
0+ r 7→ r
r + r 7→ r

Write down your simplified derivative in a readable notation using parentheses
where necessary. That means you should use the infix notation +, ·, ∗ and so
on, instead of raw code.

Question 4

Implement the simplification rules in your regular expression matcher. Con-
sider the regular expression / · ∗ · (∼ (ALL∗ · ∗ · / · ALL∗)) · ∗ · / and decide
whether the following four strings are matched by this regular expression. An-
swer yes or no.

1. "/**/"

2. "/*foobar*/"

3. "/*test*/test*/"

4. "/*test/*test*/"

Question 5

Let r1 be the regular expression a · a · a and r2 be (a{19,19}) · (a?).

Decidewhether the following three strings consisting of as only can bematched
by (r+1)+. Similarly test them with (r+2)+. Again answer in all six cases with
yes or no.

These are strings are meant to be entirely made up of as. Be careful when copy-
and-pasting the strings so as to not forgetting any a and to not introducing any
other character.

1. "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aa
aaa"

2. "aaa
aaa
aaa"

3. "aaa
aaa
aa"

4

Answers

Name:

BSc / MSci Year:

Programming Languages:

Question 1:

nullable([c1, c2, . . . , cn])
def
=

nullable(r+) def
=

nullable(r?)
def
=

nullable(r1 & r2)
def
=

nullable(r{n})
def
=

nullable(r{..m})
def
=

nullable(r{n..})
def
=

nullable(r{n..m})
def
=

nullable(∼ r) def
=

5

der c ([c1, c2, . . . , cn])
def
=

der c (r+) def
=

der c (r?)
def
=

der c (r1 & r2)
def
=

der c (r{n})
def
=

der c (r{..m})
def
=

der c (r{n..})
def
=

der c (r{n..m})
def
=

der c (∼ r) def
=

Question 2:

nullable(CFUN(f)) def
=

der c (CFUN(f)) def
=

c def
= CFUN()

[c1, c2, . . . , cn]
def
= CFUN()

ALL
def
= CFUN()

6

Question 3 (‘mathematical’ notation):

Question 4:

1) Yes / No 2) Yes / No 3) Yes / No 4) Yes / No

Question 5:

r1 r2

1.

2.

3.

7

