
POSIX Regular Expression Parsing with
Derivatives

Martin Sulzmann1 and Kenny Zhuo Ming Lu2

1 Hochschule Karlsruhe - Technik und Wirtschaft
martin.sulzmann@hs-karlsruhe.de

2 Nanyang Polytechnic
luzhuomi@gmail.com

Abstract. We adapt the POSIX policy to the setting of regular expres-
sion parsing. POSIX favors longest left-most parse trees. Compared to
other policies such as greedy left-most, the POSIX policy is more intu-
itive but much harder to implement. Almost all POSIX implementations
are buggy as observed by Kuklewicz. We show how to obtain a POSIX
algorithm for the general parsing problem based on Brzozowski’s regular
expression derivatives. Correctness is fairly straightforward to establish
and our benchmark results show that our approach is promising.

1 Introduction

We consider the parsing problem for regular expressions. Parsing produces a
parse tree which provides a detailed explanation of which subexpressions match
which substrings. The outcome of parsing is possibly ambiguous because there
may be two distinct parse trees for the same input. For example, for input string
ab and regular expression (a + b + ab)∗, there are two possible ways to break
apart input ab: (1) a, b and (2) ab. Either in the first iteration subpattern a
matches substring a, and in the second iteration subpattern b matches substring
b, or subpattern ab immediately matches the input string.

There are two popular disambiguation strategies for regular expressions:
POSIX [10] and greedy [21]. In the above, case (1) is the greedy result and
case (2) is the POSIX result. For the variation (ab + a + b)∗, case (2) is still the
POSIX result whereas now the greedy result equals case (2) as well.

We find that greedy parsing is directly tied to the structure and the order
of alternatives matters. In contrast, POSIX is less sensitive to the order of al-
ternatives because longest matches are favored. Only in case of equal matches
preference is given to the left-most match. This is a useful property for appli-
cations where we build an expression as the composition of several alternatives,
e.g. consider lexical analysis.

As it turns out, POSIX appears to be much harder to implement than greedy.
Kuklewicz [11] observes that almost all POSIX implementations are buggy which
is confirmed by our own experiments. These implementations are also restricted
in that they do not produce full parse trees and only provide submatch informa-
tion. For example, in case of Kleene star only the last match is recorded instead
of the matches for each iteration.

In this work, we propose a novel method to compute POSIX parse trees.
Specifically, we make the following contributions:
– We formally define POSIX parsing by viewing regular expressions as types

and parse trees as values (Section 2). We relate parsing to the more specific
submatching problem (Section 2.1).

– We present a method for computation of POSIX parse trees based on Brzo-
zowski’s regular expression derivatives [1]. We formally verify its correctness
and establish a linear run-time complexity (Section 3).

– We have built optimized versions for parsing as well as for the special case
of submatching where we only keep the last match in case of a Kleene star.
Experiments confirm that our method performs well in practice (Section 4).

Section 5 discusses related work and concludes. The (optional) Appendix
contains supplementary material such as formal proofs.

2 Regular Expressions and Parse Trees

Words:

w ::= ε Empty word
| l ∈ Σ Literal
| ww Concatenation

Regular expressions:

r ::= l
| r∗ Kleene star
| rr Concatenation
| r + r Choice
| ε Empty word
| φ Empty language

Parse trees:

v ::= () | l | (v, v) | Left v | Right v | vs
vs ::= [] | v : vs

` v : r

(None∗) ` [] : r∗

(Once∗)
` v : r ` vs : r∗

` (v : vs) : r∗

(Pair)
` v1 : r1 ` v2 : r2

` (v1, v2) : r1r2

(Left+)
` v1 : r1

` Left v1 : r1 + r2

(Right+)
` v2 : r2

` Right v2 : r1 + r2

(Empty) ` () : ε (Lit)
l ∈ Σ

` l : l
Flattening:

|()| = ε |l| = l |Left v| = |v| |v : vs| = |v||vs|
|[]| = ε |(v1, v2)| = |v1||v2| |Right v| = |v|

Fig. 1. Regular Expressions and Parse Trees

We follow [8] and phrase parsing as a type inhabitation relation. Regular
expressions are interpreted as types and parse trees as values of some regular

2

expression type. Figure 1 contains the details which will be explained in the
following.

The syntax of regular expressions r is standard. As it is common, concatena-
tion and alternation is assumed to be right associative. The example (a+b+ab)∗
from the introduction stands for (a + (b + ab))∗. Words w are formed using lit-
erals l taken from a finite alphabet Σ. Parse trees v are represented via some
standard data constructors such as lists, pairs, left/right injection into a disjoint
sum etc. We write [v1, ..., vn] as a short-hand for v1 : ... : vn : [].

Parse trees v and regular expressions r are related via a natural deduction
style proof system where inference rules make use of judgments ` v : r. For ex-
ample, rule (Left+) covers the case that the left alternative r1 has been matched.
We will shortly see some examples making use of the other rules.

For each derivable statement ` v : r, the parse tree v provides a proof that
the word underlying v is contained in the language described by r. That is,
L(r) = {|v| | ` v : r } where the flattening function | · | extracts the underlying
word. In general, proofs are not unique because there may be two distinct parse
trees for the same input.

Recall the example from the introduction. For expression (a + (b + ab))∗ and
input ab we find parse trees [Left a,Right Left b] and [Right Right (a, b)]. For
brevity, some parentheses are omitted, e.g. we write Right Left b as a short-hand
for Right (Left b). The derivation trees are shown below:

` a : a ` b : b

` (a, b) : ab

` Right (a, b) : b + ab

` Right Right (a, b) : a + (b + ab) ` [] : (a + (b + ab))∗

` [Right Right (a, b)] : (a + (b + ab))∗

` a : a

` Left a : (a + (b + ab))∗

` b : b

` Left b : b + ab

` Right Left b : a + (b + ab) ` [] : (a + (b + ab))∗

` [Right Left b] : (a + (b + ab))∗

` [Left a,Right Left b] : (a + (b + ab))∗

To avoid such ambiguities, the common approach is to impose a disambigua-
tion strategy which guarantees that for each regular expression r matching a
word w there exists a unique parse tree v such that |v| = w. Our interest is in
the computation of POSIX parse trees. Below we give a formal specification of
POSIX parsing by imposing an order among parse trees. Our POSIX parse tree
order is derived from a POSIX submatching order described in [24]. The con-
nection between parsing and submatching will be highlighted in the up-coming
Section 2.1.

Definition 1 (POSIX Parse Tree Ordering). We define a POSIX order-
ing v1 >r v2 among parse trees v1 and v2 where r is the underlying regular

3

expression. The ordering rulres are as follow

v1 = v′1 v2 >r2 v′2
(v1, v2) >r1r2 (v′1, v

′
2)

v1 >r1 v′1
(v1, v2) >r1r2 (v′1, v

′
2)

(P1)
len |v2| > len |v1|

Right v2 >r1+r2 Left v1

(P2)
len |v1| ≥ len |v2|

Left v1 >r1+r2 Right v2

v2 >r2 v′2
Right v2 >r1+r2 Right v′2

v1 >r1 v′1
Left v1 >r1+r2 Left v′1

(S1)
|v : vs| = ε

[] >r∗ v : vs
(S2)

|v : vs| 6= ε

v : vs >r∗ []

v1 >r v2

v1 : vs1 >r∗ v2 : vs2

v1 = v2 vs1 >r∗ vs2

v1 : vs1 >r∗ v2 : vs2

where helper function len computes the number of letters in a word.
Let r be a regular expression and v1 and v2 parse trees such that ` v1 : r

and ` v2 : r. We define v1 ≥r v2 iff either v1 and v2 are equal or v1 >r v2

where |v1| = |v2|. We say that v1 is the POSIX parse tree w.r.t. r iff ` v1 : r
and v1 ≥r v2 for any parse tree v2 where ` v2 : r and |v1| = |v2|.

The above ordering relation gives preference to longest left-most parse trees.
This is easy to see for cases r1r2 and r∗. More interesting is r1 + r2. If the
underlying word is strictly longer, we give preference to the right alternative.
See (P1). For our running example, we find that

[Right Right (a, b)] ≥(a+(b+ab))∗ [Left a,Right Left b]

Subcase (P2) guarantees that we strictly give preference to the left alternative
as long as the underlying matched word is longer or equal. This is important and
guarantees that there is not infinite chain of “larger” parse trees. For example,
consider (ε + a)∗ where for input a we find the following infinite chain of parse
trees

v0 = [Right a], v1 = [Left (),Right a], v2 = [Left (),Left (),Right a] ...

Clearly, v0 is the largest parse tree according to our ordering relation. This would
be no longer the case if we would drop the side in (P1). Then, each vi+1 would
be larger than vi. Hence, we impose the side condition len |v1| ≥ len |v2| in (P2).

Let’s consider the Kleene star case. Subcase (S1) gives preference to [] if
elements in a list of parse trees match the empty string. Otherwise, we favor a
non-empty parse tree, see subcase (S2), or perform an element-wise comparison,
see the remaining two cases.

Like in case of alternation, subcases (S1) and S2 rule out infinite chains of
“larger” parse trees when comparing parse trees which match the empty string.
For example, consider ε∗ and the empty input for which we find the following
infinite chain of parse trees

4

v0 = [], v1 = [()], v2 = [(), ()] ...

Parse tree v0 is the largest according to our ordering relation. This would be no
longer the case if we would replace (S1) and (S2) by v : vs >r∗ []. Then, each
vi+1 would be larger than vi. Hence, we find subcases (S1) and (S2).

To summarize, Definition 1 yields a well-defined POSIX order among parse
trees which enjoys maximal elements. That is, infinite chains of “larger” parse
trees are ruled out. The order is also total for parse trees v1, v2 of a regular
expression r where v1 and v2 share the same underlying word. This can be
verified by structural induction over r and by observing the various cases for v1

and v2.

Lemma 1 (Maximum and Totality of POSIX Order). For any expression
r, the ordering relation ≥r is total and has a maximal element.

2.1 Parsing versus Submatching

Annotated regular expressions: r ::= (x : r) | l | r∗ | rr | r + r | ε | φ
Submatch binding environment: Γ ::= {} | {x : w} | Γ ∪ Γ

v ` r ; Γ

v ` r ; Γ

v ` (x : r) ; {x 7→ |v|} ∪ Γ
() ` ε ; {} l ` l ; {}

[] ` r∗ ; {}
v ` r ; Γ

[v] ` r∗ ; Γ

v ` r∗ ; Γ1 vs ` r∗ ; Γ2

v : vs ` r∗ ; Γ1 ∪ Γ2

v1 ` r1 ; Γ1

v2 ` r2 ; Γ2

(v1, v2) ` r1r2 ; Γ1 ∪ Γ2

v1 ` r1 ; Γ1

Left v1 ` r1 + r2 ; Γ1

v2 ` r2 ; Γ2

Right v2 ` r1 + r2 ; Γ2

Fig. 2. From Parsing to Submatching

In practice, we rarely require the full parse tree. Often, we only care about
certain subparts and only record the last match in case of a Kleene star iteration
for space reasons. For example, consider expression ((x : a∗) + (b + c)∗)∗ where
via an annotation we have marked the subparts we are interested in. Matching
the above against word abaacc yields the submatch binding x 7→ aa. In contrast,
here is the parse tree resulting from the match against the input word abaacc

[Left [a],Right Left [b],Left [a, a],Right Left [c, c]

5

Instead of providing a stand-alone definition of POSIX submatching, we show
how to derive submatchings from parse trees. In Figure 2, we extend the syn-
tax of regular expressions with submatch annotations (x : r) where variables x
are always distinct. For parsing purposes, submatch annotations will be ignored.
Given a parse tree v of a regular expression r, we obtain the submatch environ-
ment Γ via judgments v ` r ; Γ . We simply traverse the structure of v and r
and collect the submatch binding Γ .

For our above example, we obtain the binding {x 7→ a, x 7→ aa}. Repeated
bindings resulting from Kleene star are removed by only keeping the last sub-
match. Technically, we achieve this by exhaustive application of the following
rule on submatch bindings (from left to right):

Γ1 ∪ {x : w1} ∪ Γ2 ∪ {x : w2} ∪ Γ3 = Γ1 ∪ Γ2 ∪ {x : w2} ∪ Γ3

Hence, we find the final submatch binding {x 7→ aa}.
As another example, consider expression (x : a∗)∗ and the empty input string.

The POSIX parse tree for (x : a∗)∗ is [] which implies the POSIX submatching
{x 7→ ε}.

Construction of a full parse tree is of course wasteful, if we are only interested
in certain submatchings. However, both constructions are equally challenging in
case we wish to obtain the proper POSIX candidate. That is, even if we only
keep the last match in case of a Kleene star iteration, we must compare the set of
accumulated submatches to select the appropriate POSIX, i.e. longest left-most,
match.

A naive method to obtain the POSIX parse tree is to perform an exhaustive
search. Such a method is obviously correct but potentially has an exponential
run time due to backtracking. Next, we develop a systematic method to compute
the POSIX parse tree in linear time (in the size of the input string).

3 Parse Tree Construction via Derivatives

Our idea is to apply Brzozowski’s regular expression derivatives [1] for parsing.
The derivative operation r\l performs a symbolic transformation of regular ex-
pression r and extracts (takes away) the leading letter l. In formal language
terms, we find

lw ∈ L(r) iff w ∈ L(r\l)

Thus, it is straightforward to obtain a regular expression matcher. To check if
regular expression r matches word l1...ln, we simply build a sequence of deriva-
tives and test if the final regular expression is nullable, i.e. accepts the empty
string:

Matching by extraction: r0
l1→ r1

l2→ ...
ln→ rn

In the above, we write r
l→ r′ for applying the derivative operation on r where

r′ equals r\l.

6

Regular expression derivatives:

φ\l = φ
ε\l = φ

l1\l2 =


ε if l1 == l2
φ otherwise

(r1 + r2)\l = r1\l + r2\l

(r1r2)\l =


(r1\l)r2 + r2\l if ε ∈ L(r1)
(r1\l)r2 otherwise

r∗\l = (r\l)r∗

Parse tree transformation:

mkEpsr∗ = []
mkEpsr1r2 = (mkEpsr1 ,mkEpsr2)
mkEpsr1+r2

|ε ∈ L(r1) = Left mkEpsr1
|ε ∈ L(r2) = Right mkEpsr2

mkEpsε = ()

injr∗\l(v , vs) = (injr\l v) : vs
inj(r1r2)\l =

λv .case v of
(v1, v2) → (injr1\l v1, v2)
Left (v1, v2) → (injr1\l v1, v2)
Right v2 → (mkEpsr1 , injr2\l v2)

inj(r1+r2)\l =
λv .case v of

Left v1 → Left (injr1\l v1)
Right v2 → Right (injr2\l v2)

injl\l() = l

Parsing with derivatives:

parse r ε
|ε ∈ L(r) = mkEpsr

parse r lw = injr\l(parse r\l w)

Fig. 3. Parsing Tree Construction with Derivatives

Our insight is that based on the first matching pass we can build the POSIX
parse tree via a second injection pass:

Parse trees by injection v0
l1← v1

l2← ...
ln← vn

The idea is as follows. After the final matching step, we compute the parse
tree vn for a nullable expression rn. Then, we apply a sequence of parse tree
transformations. In each transformation step, we build the parse tree vi for
expression ri given the tree vi+1 for ri+1 where ri

l→ ri+1. In the above, this
step is denoted vi

l← vi+1. Thus, we incrementally build the parse tree v0 for the
initial expression r0.

This method yields POSIX parse trees because the derivative matching pass
extracts the longest left-most sequence of letters l1...ln from r0. The injection
pass simply reverses this effect and (as we will see) by construction maintains
POSIX parse trees. For efficiency reasons, it is entirely possible to perform the
’backward’ construction of POSIX parse trees during the ’forward’ matching
pass. For presentation purposes, we describe both passes separately.

7

Figure 3 summarizes our method for construction of POSIX parse trees based
on the above idea. To explain our method in more detail, we use a simple running
example. For expression (a + ab)(b + ε) and word ab it is easy to see that the
POSIX parse tree is (Right (a, b),Right ()).

Let’s apply the ’forward’ matching pass on our example:

(a + ab)(b + ε)
a→ (ε + εb)(b + ε)
b→ (φ + (φb + ε))(b + ε) + (ε + φ)

In detail, the last step b→ is as follows:

((ε + εb)(b + ε))\b
= ((ε + εb)\b)(b + ε) + (b + ε)\b
= (ε\b + (εb)\b)(b + ε) + (b\b + ε\b)
= (φ + ((ε\b)b + b\b))(b + ε) + (ε + φ)
= (φ + (φb + ε))(b + ε) + (ε + φ)

Next, we check that the final expression (φ+(φb+ε))(b+ε)+(ε+φ) is nullable
which is the case here. Computing a POSIX tree for a nullable expression is
performed by recursing over the regular expression structure and strictly favoring
left branches. See function mkEpsr in Figure 3. For example,

mkEps(φ+(φb+ε))(b+ε)+(ε+φ) = Left (Right (Right ()),Right ())

What remains is to apply the ’backward’ injection pass where the POSIX
parse tree v′ of r\l is transformed into a POSIX parse tree v of r by injecting
the letter l appropriately into v′.

Transformation of parse trees is carried out by function injr\l in Figure 3.
This function takes as an input a parse tree of the derivative r\l and yields
a parse of r by (re)injecting the extracted letter l. Thus, we can define the
transformation step vi

l← vi+1 by vi = injri\l vi+1. Importantly, the definition
of inj follows closely the structure of the derivative operation ·\·. This guarantees
that injection maintains POSIX parse trees.

We take a closer look at the definition inj. For example, the most simple
(last) case is injl\l() = l where we transform the empty parse tree () into l.
Recall that l\l equals ε. The definition for choice is also simple. We check if
either a parse for the left or right component exists. Then, we apply inj on the
respective component.

Let’s consider the first case dealing with Kleene star. By definition r∗\l =
(r\l)r∗. Hence, the input consists of a pair (v, vs). Function injr\l is applied
recursively on v to yield a parse tree for r.

Concatenation r1r2 is the most involved case. There are three possible sub-
cases. The first subcases covers the case that r1 is not nullable. The other two
cases deal with the nullable case.

In case r1 is not nullable, we must find a pair (v1, v2). Recall that for this
case (r1r2)\l = (r1\l)r2. Hence, the derivative operation has been applied on r1

which implies that inj will also be applied on v1.

8

Let’s consider the two subcases dealing with nullable expressions r1. Recall
that in such a situation we have that (r1r2)\l = (r1\l)r2 + r2\l. Hence, we need
to check if either a parse tree for the left or right expression exists. In case of
a left parse tree, we apply inj on the leading component (like for non-nullable
r1). In case of a right parse tree, none of the letters have been extracted from
r1. Hence, we build a pair consisting of an ’empty’ parse tree mkEpsr1 for r1

and r2’s parse tree by injecting l back into v2 via injr2\l.
By construction, injr\l applied on a parse tree of r\l yields a parse tree of

r. The important property for us is that injection maintains POSIX parse trees.
The intuition is that the matching pass removes the leading (left-most) letters.
The derivative operation maintains the structure of expressions and therefore
guarantees that we extract the longest left-most sequence of letters. The injection
function simply reverses this effect.

Let’s consider application of injection for our running example. Recall that
the input parse tree (Left (Right (Right ()),Right ())) is the POSIX parse com-
puted via mkEps(φ+(φb+ε))(b+ε)+(ε+φ).

inj((ε+εb)(b+ε))\b (Left (Right (Right ()),Right ()))
= (inj(ε+εb)\bRight (Right ()),Right ())
= (Right (inj(εb)\b (Right ())),Right ())
= (Right (mkEpsε, injb\b()),Right ())
= (Right ((), b),Right ())

where (Right ((), b),Right ()) is the POSIX parse tree of (ε + εb)(b + ε) and
word b.

Another application step yields

inj((a+ab)(b+ε))\a (Right ((), b),Right ()) = (Right (a, b),Right ())

As we know the above is the POSIX parse tree for expression (a+ab)(b+ ε) and
word ab.

We formally state that our method yields POSIX parse trees.

Lemma 2 (Empty POSIX Parse Tree). Let r be a regular expression such
that ε ∈ L(r). Then, ` mkEpsr : r and mkEpsr is the POSIX parse tree of r
for the empty word.

The proof is by simple induction over the structure of r.

Lemma 3 (POSIX Preservation under Injection). Let r be a regular ex-
pression, l a letter, v a parse tree such that ` v : r\l and v is POSIX parse tree
of r\l and |v|. Then, ` (injr\l v) : r and (injr\l v) is POSIX parse tree of r
and l|v| where |(injr\l v)| = l|v|.

The proof is given in the Appendix.
Based on the above lemmas we reach the following result.

Theorem 1 (POSIX Parsing). Function parse computes POSIX parse trees.

A well-known issue is that the size and number of derivatives may explode.
For example, consider the following derivative steps.

9

a∗
a→ εa∗

a→ φa∗ + εa∗
a→ (φa∗ + εa∗) + (φa∗ + εa∗) a→ ...

As can easily be seen, subsequent derivatives are all equivalent to εa∗.
To identify similar derivatives, the work in [1] identifies three rewrite rules

to simplify derivatives:

(1) r + r ⇒ r (2) r2 + r1 ⇒ r1 + r2 where r1 < r2

(3) (r1 + r2) + r3 ⇒ r1 + (r2 + r3)

where r1 < r2 establishes a structural ordering among expression. As shown
in [1], the set of simplified, w.r.t. rewrite rules (1-3), derivatives as well as their
size is finite.

In our setting, applying a simplification r1 ⇒ r2 requires to transform r2’s
parse tree into a parse tree of r1. Of course, we wish to maintain POSIX parse
trees. For (1) and (3) it is straightforward to define such transformations. For
(2) this will not be possible because POSIX is clearly not stable under the
commutativity law. For example, consider expressions a∗ + a and a + a∗ for
which we find different POSIX parse trees for word a.

Plainly abandoning (2) will not work for cases such as (r1 +r2)+r1 where we
wish to simplify the expression to r1 +r2. The solution is as follows. Expressions
are first put into right-associative normal form, e.g. r1 + r2 + r1 which stands
for r1 + (r2 + r1). Then, we simply apply a more general variant of (1) which
will directly simplify r1 + r2 + r1 to r1 + r2.

In Figure 4 we define a function simp which takes a regular expression r and
yields an expression r′ and function f where f transforms r′ parse tree into a
parse tree of r. The simplifications effectively code up the rewrite rules (1-3) and
are carefully chosen such that we maintain POSIX parse trees. The notation

(r1 + ... + ri−1 + ri + ri+1 + ... + rn) where (r1 == ri+1) →

means that we check for pattern (r1 + ... + ri−1 + ri + ri+1 + ... + rn) which
additionally satisfies the guard condition (r1 == ri+1). We write Rightk as a
short-hand for k-nested applications of Right . For example, case (∗∗) simplifies
r1 + (r2 + r1) to r1 + r2.

Lemma 4 (POSIX Preservation under Simplifications). Let r,r′ be reg-
ular expressions, v′ a parse tree, f a transformation function among parse trees
such that simp r = (r′, f), ` v′ : r′ and v′ is the POSIX parse tree of r′ for
word |v′|. Then, ` fv′ : r and fv′ is the POSIX parse tree of r for word |v′|.

Lemma 5 (Finite Number of Derivatives [1]). The set and size of deriva-
tives which are dissimilar with respect to simplifications in Figure 4 is finite.

Next, we consider the complexity of our parsing approach. It is easy to see
that each call of one of these functions leads to subcalls whose number is bound
by the size of the regular expression involved. We assume that the parse tree
values are kept in place and not copied. For example, recall the injection case
for Kleene star

10

simp r1r2 = let (r ′1, f1) = simp r1
(r ′2, f2) = simp r2

in (r ′1r
′
2, λ.(v ′1, v

′
2).(f1 v ′1, f2 v ′2))

simp r =
case r of
((r1 + r2) + r2) →

(r1 + (r2 + r3), λv .case v of
Left v1 → Left (Left v1)
Right (Left v2) → Left (Right v2)
Right (Right v3) → Right v3)

(r1 + ... + ri−1 + ri + ri+1 + ... + rn) where (r1 == ri+1) →
((r1 + ... + ri−1 + ri+1 + ... + rn), λv .case v of

Right i−1 v ′ → Right i v ′

v ′ → v ′)
(r1 + ... + ri−1 + ri) where (r1 == ri+1&&i == 1) →

(r1, λv .Left v)
(r1 + ... + ri−1 + ri) where (r1 == ri+1&&i > 2) → (∗∗)

(r1 + ... + ri−1, λv .case v of
Right i−2 v ′ → Right i−2 (Left v ′)
v ′ → v ′)

(r1 + r2) →
let (r ′1, f1) = simp r1

(r2,
′ , f2) = simp r2

in (r ′1 + r ′2, λ.v .case v of
Left v ′1 → Left (f1v

′
1)

Right v ′2 → Right (f2v
′
2))

simp r = (r , λv .v)

Fig. 4. Simplifications

injr∗\l (v , vs) = (injr\l v) : vs

where value vs is kept in place and the resulting parse tree (injr\l v) : vs main-
tains a pointer to the original value. Thus, we can argue that functions mkEps,
inj and simp are constant time operations.

Lemma 6 (Parse Tree Transformation in Constant Time). Functions
mkEps, inj and simp are constant time operations assuming that (a) we treat
the size of regular expressions as a constant and (b) parse trees are not copied
but rather kept in place.

We obtain a linear-time POSIX parsing method by aggressively performing
simplifications.

parseSimp r ε
| ε ∈ L(r) = mkEpsr

parseSimp r lw = let (r ′, f) = simp r
in f ◦ (injr ′\l (parse r ′\l w))

11

Theorem 2 (POSIX Linear Run-Time). Function parseSimp computes POSIX
parse trees in linear time in the size of the input.

In practice, further simplifications such as εr ⇒ r, φr ⇒ φ etc may yield
even ’smaller’ derivatives. For example, see [20] for an extensive list of simplifi-
cations. In our setting, we of course need to be careful that simplifications and
their associated parse tree transformers maintain the POSIX property and still
guarantee the constant time property of Lemma 6.

For example, the following simplification breaks the constant time assump-
tion.

simp r∗ = let (r1, f) = simp r
in (r1∗, λ vs. map f vs)

We simplify the expression below a Kleene star and therefore are required to
traverse the entire sequence [v1, ..., vn] of parse tree results of r.

Fortunately, performing simplification below Kleene star is strictly not nec-
essary because we never generate such an expression. Therefore, function simp
in Figure 4 recurses over the structure of the expression with the exception of
the Kleene star which we leave untouched. Obviously, we could assume that this
simplification step is only applied on the initial regular expression.

4 Experiments

We have implemented the derivative-based POSIX parsing approach in Haskell.
An explicit DFA is built where each transition has its associated parse tree
transformer attached. Thus, we avoid repeated computations of the same calls
to mkEps, inj and simp. Instead of applying a sequence of ’backwards’ trans-
formation steps on the final (empty) parse tree, we incrementally build up the
POSIX parse tree during the matching pass. Following [17], we use a space effi-
cient bit-code representation of parse trees (see Appendix for details). Bit codes
are built lazily using a purely functional data structure [18, 6].

Experiments show that our implementation is competitive for inputs up to
the size of about 10 Mb compared to highly-tuned C-based tools such as [2]. For
larger inputs, our implementation is significantly slower (between 10-50 times)
due to what seems high memory consumption. A possible solution is to use our
method to compute the proper POSIX ’path’ and then use this information to
guide a space-efficient parsing algorithm such as [9] to build the POSIX parse
tree. This is something we are currently working on.

For the specialized submatching case we have built another Haskell imple-
mentation referred to as DERIV. In DERIV, we only record the last match in
case of Kleene star which is easily achieved in our implementation by ’overwrit-
ing’ earlier with later matches.

We have benchmarked DERIV against three contenders which also claim to
implement POSIX submatching: TDFA, a Haskell-based implementation [23] of
an adapted Laurikari-style tagged NFA. The original implementation [14] does
not always produce the proper POSIX submatch and requires the adaptations
described in [13]. RE2, the google C++ re2 library [2] where for benchmarking

12

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

time (sec)

input size (millions of ”a”s)

C-POSIX

+
+

+
+

+
+

+
+

+
++

TDFA

× × × × × × × × × ×

×
DERIV

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗
RE2

2 2 2 2 2 2 2 2 2 2

2

(a) Matching (a + b + ab)∗ with sequences of as

0
5

10
15
20
25
30
35
40
45
50

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time (sec)

input size (millions of ”ab”s)

C-POSIX

+
+

+
+

+
+

+
+

+
+

+
TDFA

×
×

×
×

× ×
×

×
×

××
DERIV

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗
RE2

2 2 2 2 2 2 2 2 2 2

2

(b) Matching (a + b + ab)∗ with sequences of abs

Fig. 5. Ambiguous Pattern Benchmark

the option RE2::POSIX is turned on. C-POSIX, the Haskell wrapper of the
default C POSIX regular expression implementation [22].

To our surprise, RE2 and C-POSIX report incorrect results, i.e. non-POSIX
matches, for some examples. For RE2 there exists a prototype version [3] which
appears to compute the correct POSIX match. We have checked the behavior
for a few selected cases. Regardless, we include RE2 and C-POSIX in our exper-
iments.

We have carried out an extensive set of benchmarks consisting of contrived as
well as real-world examples which we collected from various sources, e.g. see [12,
17, 5]. The benchmarks were executed under Mac OS X 10.7.2 with 2.4GHz Core
2 Duo and 8GB RAM where results were collected based on the median over
several test runs. The complete set of results as well as the implementation can
be retrieved via [15]. A brief summary of our experimental results follows.

Overall our DERIV performs well and for most cases we beat TDFA and
C-POSIX. RE2 is generally faster but then we are comparing a Haskell-based
implementation against a highly-tuned C-based implementation.

13

Our approach suffers for cases where the size of a DFA is exponentially larger
compared to the equivalent NFA. Most of the time is spent on building the DFA.
The actual time spent on building the match is negligible. A surprisingly simple
and efficient method to improve the performance of our approach is to apply
some form of abstraction. Instead of trying to find matches for all subpattern
locations, we may only be interested in certain locations. That is, we use the
POSIX DFA only for subparts we are interested in. For subparts we don’t care
about, rely on an NFA.

For us the most important conclusion is that DERIV particularly performs
well for cases where computation of the POSIX result is non-trivial. See Figure 5
which shows the benchmarks results for our example from the introduction. We
see this as an indication that our approach is promising to compute POSIX
results correctly and efficiently.

5 Related Work and Conclusion

The work in [7] studies like us the efficient construction of regular expression
parse trees. However, the algorithm in [7] neither respects the greedy nor the
POSIX disambiguation strategy.

Most prior works on parsing and submatching focus on greedy instead of
POSIX. The greedy result is closely tied to the structure of the regular expression
where priority is given to left-most expressions. Efficient methods for obtaining
the greedy result transform the regular expression into an NFA. A ’greedy’ NFA
traversal, which can be done in linear time, then yields the proper result. For
example, consider [14] for the case of submatching and [9, 8] for the general
parsing case.

Adopting greedy algorithms to the POSIX setting requires some subtle ad-
justments to compute the POSIX, i.e. longest left-most, result. For example,
see [4, 13, 19]. Our experiments confirm that our method particularly performs
well for cases where there is a difference between POSIX and greedy. By con-
struction our method yields the POSIX result whereas the works in [4, 13, 19]
require some additional bookkeeping (which causes overhead) to select the proper
POSIX result.

The novelty of our approach lies in the use of derivatives. Regular expression
derivatives [1] are an old idea and recently attracted again some interest in the
context of lexing/parsing [20, 16]. We recently became aware of [25] which like
us applies the idea of derivatives but only considers submatching.

To the best of our knowledge, we are the first to give an algorithm for con-
structing POSIX parse trees in linear time including a formal correctness result.
Our experiments show good results for the specialized submatching case. We are
currently working on improving the performance for the full parsing case.

Acknowledgments

We thank referees for LATA’14 for their helpful comments on an earlier version
of this paper. We thank Christian Urban and Mark Sangster for their comments.

14

References

1. Janusz A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494,
1964.

2. Russ Cox. re2 – an efficient, principled regular expression library.
http://code.google.com/p/re2/.

3. Russ Cox. NFA POSIX, 2007. http://swtch.com/~rsc/regexp/nfa-posix.y.txt.
4. Russ Cox. Regular expression matching: the virtual machine approach - digression:

Posix submatching, 2009. http://swtch.com/~rsc/regexp/regexp2.html.
5. Russ Cox. Regular expression matching in the wild, 2010.

http://swtch.com/~rsc/regexp/regexp3.html.
6. http://hackage.haskell.org/package/dequeue-0.1.5/docs/Data-Dequeue.html.
7. Danny Dubé and Marc Feeley. Efficiently building a parse tree from a regular

expression. Acta Inf., 37(2):121–144, 2000.
8. Alain Frisch and Luca Cardelli. Greedy regular expression matching. In Proc. of

ICALP’04, pages 618– 629. Spinger-Verlag, 2004.
9. Niels Bjørn Bugge Grathwohl, Fritz Henglein, Lasse Nielsen, and Ulrik Terp Ras-

mussen. Two-pass greedy regular expression parsing. In Proc. of CIAA’13, volume
7982 of LNCS, pages 60–71. Springer, 2013.

10. Institute of Electrical and Electronics Engineers (IEEE): Standard for information
technology – Portable Operating System Interface (POSIX) – Part 2 (Shell and
utilities), Section 2.8 (Regular expression notation), New York, IEEE Standard
1003.2 (1992).

11. Chris Kuklewicz. Regex POSIX. http://www.haskell.org/haskellwiki/Regex_Posix.
12. Chris Kuklewicz. The regex-posix-unittest package.

http://hackage.haskell.org/package/regex-posix-unittest.
13. Chris Kuklewicz. Forward regular expression matching with bounded space, 2007.

http://haskell.org/haskellwiki/RegexpDesign.
14. Ville Laurikari. NFAs with tagged transitions, their conversion to deterministic

automata and application to regular expressions. In SPIRE, pages 181–187, 2000.
15. Kenny Z. M. Lu and Martin Sulzmann. POSIX Submatching with Regular Ex-

pression Derivatives.
http://code.google.com/p/xhaskell-regex-deriv.

16. Matthew Might, David Darais, and Daniel Spiewak. Parsing with derivatives: a
functional pearl. In Proc. of ICFP’11, pages 189–195. ACM, 2011.

17. Lasse Nielsen and Fritz Henglein. Bit-coded regular expression parsing. In Proc.
of LATA’11, volume 6638 of LNCS, pages 402–413. Springer-Verlag, 2011.

18. Chris Okasaki. Purely functional data structures. Cambridge University Press,
1999.

19. Satoshi Okui and Taro Suzuki. Disambiguation in regular expression matching
via position automata with augmented transitions. In Proc. of CIAA’10, pages
231–240. Springer-Verlag, 2011.

20. Scott Owens, John Reppy, and Aaron Turon. Regular-expression derivatives reex-
amined. Journal of Functional Programming, 19(2):173–190, 2009.

21. PCRE - Perl Compatible Regular Expressions. http://www.pcre.org/.
22. regex-posix: The posix regex backend for regex-base.

http://hackage.haskell.org/package/regex-posix.
23. regex-tdfa: A new all haskell tagged dfa regex engine, inspired by libtre.

http://hackage.haskell.org/package/regex-tdfa.
24. Stijn Vansummeren. Type inference for unique pattern matching. ACM TOPLAS,

28(3):389–428, May 2006.
25. Jérôme Vouillon. ocaml-re - Pure OCaml regular expressions, with support for

Perl and POSIX-style strings. https://github.com/avsm/ocaml-re.

15

Optional material such as formal proofs

A Proof of Lemma 3

The formal proof that injection preserves POSIX parse trees requires a projection
function:

proj(l,l) = λ . ()
proj(r∗,l) = λ (v : vs). (proj(r ,l) v , vs)
proj(r1+r2,l) =

λ v . case v of
Left v1 → Left (proj(r1,l) v1)
Right v2 → Right (proj(r2,l) v2)

proj(r1 r2,l) =
λ (v1, v2).

if |v1| 6= ε
then if ε ∈ L(r1)

then Left (proj(r1,l) v1, v2)
else (proj(r1,l) v1, v2)

else Right (proj(r2,l) v2)

Injection and projection are inverses. Like injection, projection preserves
POSIX parse trees and proj(r,l) shall only be applied on non-empty parse trees
with the proper leading letter l.

Lemma 7 (Projection and Injection). Let r be a regular expression, l a
letter and v a parse tree.

1. If ` v : r and |v| = lw for some word w, then ` proj(r,l) v : r\l.
2. If ` v : r\l then (proj(r,l) ◦ injr\l) v = v.
3. If ` v : r and |v| = lw for some word w, then (injr\l ◦ proj(r,l)) v = v.

For convenience, we write “` v : r is POSIX” where we mean that ` v : r
holds and v is the POSIX parse tree of r for word |v|.

Lemma 3 follows from the following statement.

Lemma 8 (POSIX Preservation under Injection and Projection). Let
r be a regular expression, l a letter and v a parse tree.

1. If ` v : r\l is POSIX, then ` (injr\l v) : r and (injr\l v) is POSIX.
2. If ` v : r is POSIX. and |v| = lw for some word w, then ` (proj(r,l) v) : r\l

is POSIX.

Proof. There is a mutually dependency between statements (1) and (2). Both
are proven by induction over r. We first verify statement (1) by case analysis.

– Case r1 + r2: We consider the possible shape of v.
• First, we consider subcase v = Right v2 where ` Right v2 : r1\l + r2\l.

1. By assumption Right v2 is the POSIX parse tree of r1\l + r2\l.
2. Hence, we can conclude that ` v2 : r2\l where v2 is the POSIX

parse tree of r2\l.

16

3. We are in the position to apply the induction hypothesis on r2\l and
find that ` (injr2\l v2) : r2 where injr2\l v2 is the POSIX parse
tree.

4. We immediately find that ` Right (injr2\l v2) : r1 + r2.
5. What remains is to verify that Right (injr2\l v2) is the POSIX parse

tree. Suppose the opposite. We distinguish among two cases (either
there is POSIX ’right’ or ’left’ alternative).
(a) i. Suppose there exists a POSIX parse tree Right v′2 such that

` Right v′2 : r1 + r2 and v′2 6= injr2\l v2 (*).
ii. From (2) we obtain the POSIX parse tree ` Right (proj(r1+r2,l) v′2) :

r1\l + r2\l.
iii. By assumption, Right v2 is also POSIX.
iv. Hence, proj(r1+r2,l) v′2 = v2.
v. By application of (4) and the above we find that v′2 = injr2\l v2

which yields a contradiction to (*).
(b) i. Suppose there exists a POSIX parse tree Left v′1 such that

` Left v′1 : r1+r2 for some v′2 where it must hold that |v′2| = lw
for some word w.

ii. From (2) we obtain the POSIX parse tree ` Left (proj(r1+r2,l) v′2) :
r1\l + r2\l.

iii. This contradicts our initial assumption that Right v2 is the
POSIX parse tree of r1\l + r2\l.

In both cases, we have reached a contradiction. Hence, Right (injr2\l v2)
is the POSIX parse tree.

• Subcase v = Left v3 can be proven similarly. Hence, we can establish the
induction step in case of alternatives.

– Case r1r2: There are three possible subcases dictated by derivative operation.
Either v = (v1, v2), v = Left (v1, v2) or v = Right v2.
• First, we consider subcase v = (v1, v2) where ` (v1, v2) : (r1\l)r2. This

implies that ε 6∈ L(r1).
1. By assumption (v1, v2) is POSIX. Hence, we can follow that ` v1 :

r1\l is POSIX as well.
2. We are in the position to apply the induction hypothesis and obtain

that ` (inj(r1\l) v1) : r1 is POSIX.
3. It immediately follows that ` (inj(r1\l) v1, v2) : r1r2. What remains

is to verify that this is the POSIX parse tree. We proceed again
assuming the opposite.
(a) Suppose there exists a POSIX parse tree (v′1, v

′
2).

(b) This implies that either (a) v′1 >r1 inj(r1\l) v1 or (b) v′1 =
inj(r1\l) v1 and v′2 >r2 v2.

(c) Case (a) contradicts the fact that inj(r1\l) v1.
(d) Hence, (b) can only apply.
(e) But then via (2) and (3) we can conclude that (v1, v

′
2) is POSIX

which contradicts our initial assumption that (v1, v2) is POSIX.
(f) Hence, (inj(r1\l) v1, v2) is POSIX and so is inj(r1r2)\l(v1, v2).

• We consider the second subcase that ` Left (v1, v2) : (r1\l)r2 + r2\l
is POSIX. For this case ε ∈ L(r1). We conclude that ` (v1, v2) :
(r1\l)r2 and using the same arguments as above we can verify that
inj(r1r2)\l(Left (v1, v2)) is POSIX.

17

• For the third subcase, we find that ` Right v2 : (r1\l)r2+r2\l is POSIX.
1. Hence, ` v2 : r2\l POSIX and application of the induction hypoth-

esis yields ` (injr2\l v2) : r2 is POSIX.
2. We verify that inj(r1r2)\l(Right v2) = (mkEpsr1 , injr2\l v2) is POSIX.
3. Suppose the contrary. Then, there must be some POSIX (v′1, v

′
2)

where |v′1| 6= ε.
4. Application of (2) yields then some POSIX parse tree Left v′3 of

(r1\l)r2 + r2\l which contradicts the assumption that Right v2 is
POSIX.

In all three subcases we could establish the induction step which concludes
the proof of case r1r2.

– Case r∗:
1. By assumption we have that ` (v, vs) : (r\l, r∗) is POSIX which implies

that ` v : r\l must be POSIX as well. (The case that |(v, vs)| = ε would
require some special consideration. Ignored for brevity).

2. Application of the induction hypothesis yields ` (injr\l v) : r is POSIX.
3. By observing the POSIX ordering rules in Definition 1, we can conclude

that ` ((injr\l v) : vs) : r∗ is POSIX which establishes the induction
step. The proof details are as follows. We first repeat the relevant order-
ing rules:

(S1)
|v : vs| = ε

[] >r∗ v : vs
(S2)

|v : vs| 6= ε

v : vs >r∗ []

(S3)
v1 >r v2

v1 : vs1 >r∗ v2 : vs2

(S4)
v1 = v2 vs1 >r∗ vs2

v1 : vs1 >r∗ v2 : vs2

(a) Assume the contrary: ` ((injr\l v) : vs) : r∗ is not POSIX.
(b) Then, there must exists ` (v′′ : vs′′) : r∗ where (v′′ : vs′′) >r∗

((injr\l v) : vs).
(c) Rules (S1) and (S2) can be ignored. They, deal with the special []

case which does not apply due to injection of a letter in parse tree.
(d) Suppose rule (S3) applies. Then, we find v′′ >r (injr\l v) which

contradicts our assumption that ` (injr\l v) : r is POSIX.
(e) Hence, the only remaining rule is (S4) which implies that v′′ =

injr\l v and vs′′ >r∗ vs (*). Out goal is to contradict (*).
(f) By applying the projection function we obtain proj(r,l) v′′ = v which

in combination with ` (v′′ : vs′′) : r∗ yields ` (v, vs′′) : (r\l, r∗)
(**). Follows from Lemma 7.

(g) By assumption ` (v, vs) : (r\l, r∗) is POSIX. Then, from (**) and
via rule (S4) we obtain that vs >r∗ vs′′.

(h) The above statement contradicts (*). Hence, we are done.

The remaining cases for l and ε are trivial.
Next, we consider statement (2) and proceed again by case analysis.

– Case r1 + r2. There are two possible subcases. Either v = Right v2 or v =
Left v2.
We first consider that ` Right v2 : r1 + r2 is POSIX.

18

1. We conclude that ` v2 : r2 is POSIX.
2. Application of the induction hypothesis yields ` (proj(r2,l) v2) : r2\l is

POSIX.
3. What remains is to show that ` Right (proj(r2,l) v2) : r2\l + r1\l is

POSIX. Suppose the opposite.
(a) It is straightforward to reach a contradiction in case there is a POSIX

’right’ alternative Right v′2.
(b) Hence, there must exist ` Left v′1 : r2\l + r1\l such that Left v′1 is

POSIX.
(c) By application of (1), we find that ` Left (injr1\l v1) : r1 +r2 which

contradicts our initial assumption that Right v2 is POSIX.
Hence, Right (proj(r2,l) v2) is POSIX which establishes the induction
step for this subcase.

Subcase Left v2 can be proven similarly.
– Case r1r2:

1. By assumption v = (v1, v2) and ` (v1, v2) : r1r2 is POSIX which implies
that ` v1 : r1 is POSIX.

2. We consider the possible cases of |v1|.
3. Suppose |v1| 6= ε.

(a) By application of the induction hypothesis we obtain ` (proj(r1,l) v1) :
r1\l is POSIX.

(b) The above implies ` (proj(r1,l) v1, v2) : (r1\l)r2. We are done if
ε 6∈ L(r1).

(c) Otherwise, it is straightforward to verify that ` Left (proj(r1,l) v1, v2) :
(r1r2)\l.

(d) Thus, we establish the induction step under the given assumption.
4. Otherwise, |v1| = ε which implies ε ∈ L(r1).

(a) By induction we find ` (proj(r2,l) v2) : r2\l is POSIX.
(b) What remains is to show that ` Right (proj(r2,l) v2) : (r1\l)r2+r2\l

is POSIX. Suppose the opposite.
i. It is straightforward to reach a contradiction in case there is a

POSIX ’right’ alternative Right v′2.
ii. Hence, there must exist ` Left (v′1, v

′
2) : (r1\l)r2 + r2\l and

Left (v′1, v
′
2) is POSIX.

iii. From (1) we then conclude that ` (injr1\l v′1, v
′
2) : r1r2 is

POSIX.
iv. This contradicts the assumption that (v1, v2) is POSIX and |v1| =

ε.
v. Thus, we establish the induction step under the given assumption

and are done.
– Case r∗:

1. By assumption ` (v : vs) : r∗ is POSIX where |v| 6= ε.
2. Application of the induction hypothesis yields that ` (proj(r,l) v) : r\l

is POSIX.
3. Immediately, we find that ` ((proj(r,l) v, vs) : (r\l)r∗ is POSIX which

establishes the induction step.
The remaining case for l is trivial.

19

B Incremental Bit-Coded Forward Parse Tree
Construction

We describe a refined parse tree construction method where

– we use bit-codes to represent parse trees, and
– we incrementally build up parse trees while matching.

The refinement can be directly derived from Figure 3.
Regular expressions are now annotated with bit codes:

b ::= 0 | 0
bs ::= [] | b : bs Bit-codes
r ::= (bs : l)
| (bs : r∗) Kleene star
| (bs : rr) Concatenation
| (bs : r + r) Choice
| (bs : r ⊕ r) Internal Choice
| (bs : ε) Empty word
| φ Empty language

The ’internal’ choice represents an expression where one of the alternatives
shall be selected without keeping track if it is the left or right alternative. Its
exact purpose will be clear shortly.

Given a bit code sequence and a regular expression, we can straightforwardly
compute the parse tree.

decoder bs = let (v , p) = decode ′r bs
in case p of

[] → v
decode ′ε bs = ((), bs)
decode ′l bs = (l , bs)
decode ′r1 + r2 (0 : bs) = let (v , p) = decode ′r1 bs

in (Left v , p)
decode ′r1 + r2 (1 : bs) = let (v , p) = decode ′r1 bs

in (Right v , p)
decode ′r1 r2 bs = let (v1, p1) = decode ′r1 bs

(v2, p2) = decode ′r2 p1

in ((v1, v2), p2)
decode ′r∗ (0 : bs) = let (v , p1) = decode ′r bs

(vs, p2) = decode ′r∗ p1

in ((v : vs), p2)
decode ′r∗ (1 : bs) = ([], bs)

The internal choice case is not relevant here. Function decoder will be applied
on the ’original’ expression r which does not carry any bit code information.

Like in the earlier ’injection’ approach, we must compute the bit code of a
nullable expression.

mkEpsBC(bs : r∗) = bs ++ [1]

20

mkEps (bs : r1 r2) = bs ++ mkEpsr1 ++ mkEpsr2)
mkEps (bs : r1+r2)

| ε ∈ L(r1) = bs ++ (0 : mkEpsr1)
| ε ∈ L(r2) = bs ++ (1 : mkEpsr2)

mkEps (bs : r1 ⊕ r2)

| ε ∈ L(r1) = bs ++ mkEpsr1
| ε ∈ L(r2) = bs ++ mkEpsr2

mkEps(bs : ε) = bs

The internal choice case may now arise but we do not record any ’direction’
information.

The main difference to the ’injection’ approach is that bit-coded parse tree
information is computed during the application of the derivative operation.

φ\bl = φ
(bs : ε)\bl = φ

(bs : l1)\bl2 =
{

(bs : ε) if l1 == l2
φ otherwise

(bs : r1 + r2)\bl = (bs++[0] : r1)\bl ⊕ (bs++[1] : r2)\l

(bs : r1r2)\bl =
{

(bs : (r1\bl)r2)⊕ (fuse mkEpsBCr1 (r2\bl)) if ε ∈ L(r1)
(bs : (r1\bl))r2 otherwise

r∗\l = (r\l)r∗

The reason for ⊕ becomes now apparent in case of concatenation. For a
nullable expression, there are two possible cases which are tried. As we now
move forward, we must compute the bit-code representation mkEpsBCr2 of
the nullable expression r2. We attach this information to the top-most bit-code
annotation in expression r1 via helper function fuse.

fuse bs φ = φ
fuse bs (p : ε) = (bs ++ p : ε)
fuse bs (p : l) = (bs ++ p : l)
fuse bs (p : r1 + r2) = (bs ++ p : r1 + r2)
fuse bs (p : r1 ⊕ r2) = (bs ++ p : r1 ⊕ r2)
fuse bs (p : r1 r2) = (bs ++ p : r1 r2)
fuse bs (p : r∗) = (bs ++ p : r∗)

The correctness of the bit-codes accumulated by ·\b· can be easily argued
by direct correspondence to inj. Instead of a constructing the parse tree ’back-
wards’, we simply now strictly move ’forward’.

It is also straightforward to incorporate simplifications on expressions which
carry bit-codes. For example, consider the rule for turning alternatives into right
associativity form.

simpBC (p1 : (p2 : r1 + r2) + r3) =
[] : (fuse (p1 ++ p2 ++ [0, 0]) r1)

⊕ ((fuse (p1 ++ p2 ++ [0, 1]) r2) ⊕ (fuse (p1 ++ [1]) r3))

For convenience, we combine alternatives via the ’internal’ choice operator
and record the parse tree information in the bit-code annotations.

21

Like before, we repeatedly apply the derivative operation and perform sim-
plifications. To extract the bit-code for the original expression we simply retrieve
the bit-codes from the final (nullable) expression.

retrieve(p : ε) = p
retrieve(p : r1 + r2)

| ε ∈ L(r1) = p ++ (0 : retriever1)
| ε ∈ L(r2) = p ++ (0 : retriever2)

retrieve(p : r1 ⊕ r2)

| ε ∈ L(r1) = p ++ retriever1

| ε ∈ L(r2) = p ++ retriever2
retrieve(p : r1 r2) = p ++ retriever1 ++ retriever2

retrieve(p : r∗) = p ++ [1]

In summary, the incremental forward POSIX parsing algorithm based on
bit-codes is as follows:

parseBC ′ r ε
| ε ∈ L(r) = retriever

parseBC ′ r lw = parseBC ′ (simpBC (r\b l)) w
parseBC r w = decoder (parseBC ′ r w)

We assume that in the call parseBC ′ r w , the bit-code annotations in ex-
pression r are empty, i.e. [].

22

