CSCI 742 - Compiler Construction

Lecture 21
Introduction to Type Checking
Instructor: Hossein Hojjat

March 19, 2018

Compiler Phases

Source Code
(concrete syntax)

‘if (xi==10)| [x|=x+1f;

Lexical Analysis
AR

Token Stream E@H

Syntax Analysis
(R (Parsing)
Abstract Syntex Tree == S o
(AST) ® © ® @
® @ Semantic Analysis
(Name Analysis,
Type Analysis, ...)

Attributed AST

Code Generation

Machine Code

Compiler Phases

Type theory covers a huge range of topics

Several lectures in the courses

- Programming Language Concepts (344)
- Programming Language Theory (740)

In this course we do not cover the theoretical aspects of

type system design

e We are mostly interested in type checking as a major component
of the semantic analysis phase

What is a type?

e Type: a set of values and a set of operations on those values
e Example: Integers
e int x,vy; means:
- x,y € [_2317231)
- Operations + — < <= mod ... are possible on x and y
e Type errors:

improper, type-inconsistent operations during program execution

e Type safety: absence of type errors at run time

How to Ensure Type-Safety?

Bind (assign) types, then check types
Type binding

e Defines types for constructs in the program
(e.g., variables, functions)
e Can be either explicit (boolean x) or implicit (x = false)

e Type safety: correctness with respect to the type bindings

Type checking

e Static semantic checks to enforce the type safety of the program

e Enforce a set of type-checking rules

Type Check Examples

Operators (such as +) receive the right types of operands

User-defined functions receive the right types of operands

LHS of an assignment should be “assignable”

Variables are assigned the expected kinds of values

Return statement must agree with return type

Class members accessed appropriately

Static vs. Dynamic Typing

Statically typed language: types are defined and checked at
compile-time,
and do not change during the execution of the program

E.g., C, Java, Pascal

Dynamically typed language: types defined and checked at
run-time, during program execution

E.g., Lisp, Scheme, Smalltalk

Why Static Checking?

e Efficient code: dynamic checks slow down the program
o Guarantees that all executions will be safe

e With dynamic checking, you never know when the next execution of
the program will fail due to a type error

Drawbacks

e Adds an annotation burden for programmers

e Static type safety is a conservative approximation of the values that
may occur during all possible executions

e It may reject some type-safe programs unfairly

Suitable Formalism

e We have used the following formal notations for specifying the first
two phases of compiler:

- Regular expressions for lexical analysis
- Context-free grammars for parsers

e We use inference systems from logic to formalize type checking

- Similar to what we did in name analysis

e Inference systems are suitable for performing computations of form:

If the first expression is of type 1" and
the second expression is of type 7" then
the third expression must be of type T”

und: Inference Systems

e Example inference rule:

All great universities have smart students Premise 1
RIT is a great university Premise 2
RIT has smart students Conclusion
e Example inference rule:

e1 has type int Premise 1
es has type int Premise 2
€1 + e has type int Conclusion

und: Inference Systems

e An inference system has two parts:
1. Definition of Judgments
e Judgment: statement asserting a certain fact for an object

2. Finite set of Inference Rules

e An inference rule has:

1. a finite number of judgments Py, P, --- , P, as premises;
2. a single judgment C' as conclusion

e If a rule has no premises, it is called an axiom

P Py e P, Premises above the line (0 or more)
C (RS Conclusion below the line

10

Background: Inference Systems

Example: Use an inference system to define the set of even numbers

Judgment: Even(n) asserts that n is an even number

e Inference rules:

- Axiom:
— (Even0)
Even(0)
- Successor Rule:
Even(n)
— (EvenS)
Even(n + 2)

11

Derivation Tree

Even(n)
Even(0) (Even0) Even(n + 2)

(EvenS)

e To derive more judgments we create trees of inference rules

12

Derivation Tree

Even(n)
Even(0) (Event) Even(n +2)

(EvenS)

e To derive more judgments we create trees of inference rules

e Does Even(1) hold?

e No, because there exists no possible derivation

12

Derivation Tree

Axioms
Judgment
Judgment Judgment Rules
Judgment Judgment Judgment

Judgment

13

Example: Less-than

Example: Use an inference system to define the less-than relation

e Judgment: n < m asserts that n is smaller than m
e Inference rules:
- Axiom:

— (Suc)
n<n+1

- Transitivity Rule:
k<n n<m

Trans
k<m ()

Exercise: Prove 0 < 3.

14

Type Judgments and Type Rules

e type checks to T" under T' (type environment)

I'te:T

Types of constants are predefined

Type binding: types of variables are specified in the source code

If € is composed of sub-expressions

I'ke :Th I'te,:T,
I'kFe:T

15

Type Judgments and Type Rules

If the (free) variables of e have types given by the type environment
gamma, then e (correctly) type checks and has type T

I'ke : Ty I'ke,:T,
I'ke:T

If e; type checks in I and has type T}
and ...

and e, type checks in I" and has type T,
then e type checks in I" and has type T’

16

Type Rules with Environment

intX in y inty 1 int
int x; ' v \/
int y; > Type Environment I' b2 . X Yo
(x<y) 7 x : (y + 1) boolean\lntV LI
?.
*int
Type Rules:
(x:T)el
Trz:-T IntConst(k) : int
I'Fep:int I'Fey:int I'Fe:int I'Fey:int
't (e1 < e2) : boolean 'k (e; +e9): int

I'b:boolean I'ke : T I'kFey: T
F}_(b?(ili(ig)ZT 17

