Handout 1

This module is about text processing, be it for web-crawlers, compilers, dictio-
naries, DNA-data and so on. When looking for a particular string in a large
text we can use the Knuth-Morris-Pratt algorithm, which is currently the most
efficient general string search algorithm. But often we do not look for just a
particular string, but for string patterns. For example in programming code we
need to identify what are the keywords, what are the identifiers etc. Also often
we face the problem that we are given a string (for example some user input)
and want to know whether it matches a particular pattern. For example for
excluding some user input that would otherwise have nasty effects on our pro-
gram (crashing or going into an infinite loop, if not worse). Regular expressions
help with conveniently specifying such patterns.

The idea behind regular expressions is that they are a simple method for
describing languages (or sets of strings)...at least languages we are interested
in in computer science. For example there is no convenient regular expression
for describing the English language short of enumerating all English words.
But they seem useful for describing for example email addresses.! Consider
the following regular expression

[a-z0-9_.-]+ @ [a-z0-9.-]+ . [a-z.]{2,6} 1)

where the first part matches one or more lowercase letters (a-z), digits (8-9),
underscores, dots or hyphens. The + ensures the “one or more”. Then comes
the @-sign, followed by the domain name which must be one or more lowercase
letters, digits, underscores, dots or hyphens. Note there cannot be an under-
score in the domain name. Finally there must be a dot followed by the toplevel
domain. This toplevel domain must be 2 to 6 lowercase letters including the
dot. Example strings which follow this pattern are:

niceandsimple@example.com
very.common@example.org
a.little.lengthy.but.fine@dept.example.co.uk
other.email-with-dash@example.ac.uk

But for example the following two do not:

user@localserver
disposable.style.email.with+symbol@example.com

Many programming language offer libraries that can be used to validate
such strings against regular expressions, like the one for email addresses in (1).
There are some common, and I am sure very familiar, ways how to construct
regular expressions. For example in Scala we have

re* matches 0 or more occurrences of preceding expression

ISee “8 Regular Expressions You Should Know” http://goo.gl/5LoVX7

http://goo.gl/5LoVX7

re+ matches 1 or more occurrences of preceding expression

re? matches 0 or 1 occurrence of preceding expression

re{n} matches exactly n number of occurrences

re{n,m} matchesatleastnand at mostmoccurences of the preceding
expression

[...] matches any single character inside the brackets

[~...] matches any single character not inside the brackets
B character ranges
\d matches digits; equivalent to [0-9]

With this you can figure out the purpose of the regular expressions in the web-
crawlers shown Figures 1, 2 and 3. Note the regular expression for http-addresses
in web-pages:

"https?://[""]*"

It specifies that web-addresses need to start with a double quote, then comes
http followed by an optional s and so on. Usually we would have to escape the
double quotes in order to make sure we interpret the double quote as character,
not as double quote for a string. But Scala’s trick with triple quotes allows us
to omit this kind of escaping. As a result we can just write:

"ttUhttps?/ /(AT e

Not also that the convention in Scala is that .r converts a string into a regular
expression. I leave it to you to ponder whether this regular expression really
captures all possible web-addresses.

Regular expressions were introduced by Kleene in the 1950ies and they have
been object of intense study since then. They are nowadays pretty much ubiqui-
tous in computer science. I am sure you have come across them before. Why on
earth then is there any interest in studying them again in depth in this module?
Well, one answer is in the following graph about regular expression matching
in Python and in Ruby.

20 - e Python

4 Ruby

time in secs
—_
[6;]
1

O===vv 1
0 5 10 15 20 25 30

number of as

This graph shows that Python needs approximately 29 seconds in order to find
out that a string of 28 as matches the regular expression [a?]{28}[a]{28}.
Ruby is even slightly worse.? Admittedly, this regular expression is carefully
chosen to exhibit this exponential behaviour, but similar ones occur more often
than one wants in “real life”. They are sometimes called evil regular expressions
because they have the potential to make regular expression matching engines
topple over, like in Python and Ruby. The problem is that this can have some
serious consequences, for example, if you use them in your web-application, be-
cause hackers can look for these instances where the matching engine behaves
badly and mount a nice DoS-attack against your application.

It will be instructive to look behind the “scenes”to find out why Python
and Ruby (and others) behave so badly when matching with evil regular ex-
pressions. But we will also look at a relatively simple algorithm that solves
this problem much better than Python and Ruby do...actually it will be two
versions of the algorithm: the first one will be able to process strings of approx-
imately 1,000 as in 30 seconds, while the second version will even be able to
process up to 12,000 in less than 10(!) seconds, see the graph below:

30
25 A
20 -
15 +
10 +
5 M

0 w w x \

0 2000 4000 6000 8000 10000 12000

number of as

time in secs

Basic Regular Expressions

The regular expressions shown above we will call extended regular expressions.
The ones we will mainly study are basic regular expressions, which by conven-
tion we will just call regular expressions, if it is clear what we mean. The attrac-
tion of (basic) regular expressions is that many features of the extended one are
just syntactic suggar. (Basic) regular expressions are defined by the following
grammar:

ri=0o null
| e empty string /""" /[]
| c single character
| r1-12 sequence
| 11472 alternative / choice

star (zero or more)

2In this example Ruby uses the slightly different regular expression a?a?a?...a?a?aaa. ..aa,
where the a? and a each occur 7 times.

Because we overload our notation, there are some subtleties you should be
aware of. First, when regular expressions are referred to then @ does not stand
for the empty set: it is a particular pattern that does not match any string. Simi-
larly, in the context of regular expressions, € does not stand for the empty string
(as in many places in the literature) but for a pattern that matches the empty
string. Second, the letter c stands for any character from the alphabet at hand.
Again in the context of regular expressions, it is a particular pattern that can
match the specified string. Third, you should also be careful with the our over-
loading of the star: assuming you have read the handout about our basic math-
ematical notation, you will see that in the context of languages (sets of strings)
the star stands for an operation on languages. While r* stands for a regular
expression, the operation on sets is defined as

A ar
0<n

We will use parentheses to disambiguate regular expressions. Parentheses
are not really part of a regular expression, and indeed we do not need them
in our code because there the tree structure is always clear. But for writing
them down in a more mathematical fashion, parentheses will be helpful. For
example we will write (1 + r2)*, which is different from, say r; + (r2)*. The
former means roughly zero or more times ry or rp, while the latter means r;
or zero or more times rp. This will turn out are two different pattern, which
match in general different strings. We should also write (11 + r2) + r3, which
is different from the regular expression r; + (72 + r3), but in case of + and -
we actually do not care about the order and just write rq + 12 413, 0r 71 - 12 - 13,
respectively. The reasons for this will become clear shortly. In the literature
you will often find that the choice r1 + r; is written as r1 | rp or r1 || 1. Also
following the convention in the literature, we will often omit the - all together.
This is to make some concrete regular expressions more readable. For example
the regular expression for email addresses shown in (1) would look like

[...]# @ [...]+ .« - [...1{2,6}
which is much less readable than (1). Similarly for the regular expression that
matches the string hello we should write

h-e-l1-1-0

but often just write hello.
If you prefer to think in terms of the implementation of regular expressions
in Scala, the constructors and classes relate as follows

g +— NULL

€ +— EMPTY

¢+ CHAR(c)
ri+r +— ALT(rl, r2)
ri1-rp +— SEQ(rl, r2)

r* +— STAR(r)

A source of confusion might arise from the fact that we use the term ba-
sic reqular expression for the regular expressions used in “theory” and defined
above, and extended regular expression for the ones used in “practice”, for ex-
ample Scala. If runtime is not of an issue, then the latter can be seen as some
syntactic sugar of the former. Fo example we could replace

rt = et

r? = €e+r

\d — 04+1+2+...49
a-z| — a+b+...4+z
[a-z]

The Meaning of Regular Expressions

So far we have only considered informally what the meaning of a regular ex-
pression is. This is no good for specifications of what algorithms are supposed
to do or which problems they are supposed to solve.

To do so more formally we will associate with every regular expression a
language, or set of strings, that is supposed to be matched by this regular ex-
pression. To understand what is going on here it is crucial that you have also
read the handout about our basic mathematical notations.

The meaning of a regular expression can be defined recursively as follows

L) = @

L(e) d:f {0

Lc) = {7}
Lirn+r) £ L(rn)UL(r)
L(ri-r) % L(rn)@L(r)

L) & (L)

As a result we can now precisely state what the meaning, for example, of the
regular expressionfi-e-1-1-o0is,namely L(h-e-1-1-0) = {"hello”}...as expected.
Similarly if we have the choice-regular-expression a + b, its meaning is L(a +
b) = {”a”,”b”}, namely the only two strings which can possibly be matched
by this choice. You can now also see why we do not make a difference between
the different regular expressions (r1 + r2) + r3 and r1 + (12 + r3)....they are not
the same regular expression, but have the same meaning.

The point of the definition of L is that we can use it to precisely specify when
a string s is matched by a regular expression r, namely only when s € L(r).
In fact we will write a program match that takes any string s and any regular
expression r as argument and returns yes, if s € L(r) and no, if s ¢ L(r). We
leave this for the next lecture.

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

// A crawler which checks whether there are
// dead links in web-pages

import io.Source
import scala.util.matching.Regex
import scala.util._

// gets the first 10K of a web-page
def get_page(url: String) : String = {
Try(Source.fromURL(url).take(10000).mkString) getOrElse
{ println(s" Problem with: $url™); ""}

}

// regex for URLs
val http_pattern = """"https?://[~"]*"""".r

// drops the first and last character from a string
def unquote(s: String) = s.drop(l).dropRight(1)

def get_all URLs(page: String) : Set[String] = {
http_pattern.findAllIn(page).map(unquote).toSet
}

// naive version of crawl - searches until a given depth,
// visits pages potentially more than once
def crawl(url: String, n: Int) : Unit = {
if (n==19) ()
else {
println(s"Visiting: $n $url®)
for (u <- get_all URLs(get_page(url))) crawl(u, n - 1)

}
}
// some starting URLs for the crawler
val startURL = """http://www.inf.kcl.ac.uk/staff/urbanc"""
//val startURL = """http://www.inf.kcl.ac.uk/staff/mcburney"""

crawl(startURL, 2)

Figure 1: The Scala code for a simple web-crawler that checks for broken links
in a web-page. It uses the regular expression http_patternin Line 15 for recog-
nising URL-addresses. It finds all links using the library function findAl11lInin
Line 21.

1 // This version of the crawler only
2 // checks links in the "domain" urbanc

+ import io.Source
s import scala.util.matching.Regex
¢ import scala.util._

s // gets the first 10K of a web-page

s def get_page(url: String) : String = {

10 Try(Source.fromURL(url).take(10000).mkString) getOrElse
1 { println(s" Problem with: $url™); ""}

2}

u // regexes for URLs and "my" domain

5 val http_pattern = """"https?://[~"]*"""".r

1 val my _urls = """urbanc""".r

18 def unquote(s: String) = s.drop(l).dropRight(1)

» def get_all URLs(page: String) : Set[String] = {
21 http_pattern.findAllIn(page).map(unquote).toSet
» }

23

u def crawl(url: String, n: Int) : Unit = {

25 if (n == 0) ()

2% else if (my_urls.findFirstIn(url) == None) {

P println(s"Visiting: $n $url")

2 get_page(url); ()

29 }

30 else {

31 println(s"Visiting: $n $url")

» for (u <- get_all URLs(get_page(url))) crawl(u, n - 1)
33 }

EYR

35

% // starting URL for the crawler

» val startURL = """http://www.inf.kcl.ac.uk/staff/urbanc"""
38

s // can now deal with depth 3 and beyond

o crawl(startURL, 3)

Figure 2: A version of the web-crawler that only follows links in “my”
domain—since these are the ones I am interested in to fix. It uses the regu-
lar expression my_urls in Line 16 to check for my name in the links. The main
change is in Lines 26-29 where there is a test whether URL is in “my” domain
or not.

1 // This version of the crawler that also
> // "harvests" email addresses from webpages

4+ import io.Source
5 import scala.util.matching.Regex
6 dimport scala.util._

s def get_page(url: String) : String = {
9 Try(Source.fromURL(url).take(10000).mkString) getOrElse

10 { println(s" Problem with: $url™); ""}

1 }

12

13 // regexes for URLs, for "my" domain and for email addresses

1 val http_pattern = """"https?://[~"]*"""".r

15 val my_urls = """urbanc""".r

16 val email pattern = """([a-z0-9_\.-]+)@([\da-z\.-]+)\.([a-z\.]{2,6})""".r

18 def unquote(s: String) = s.drop(l).dropRight(1)

» def get_all URLs(page: String) : Set[String] = {
2 http_pattern.findAllIn(page).map(unquote).toSet
» }

23

» def print_str(s: String) =

2 if (s == "") () else println(s)

26

» def crawl(url: String, n: Int) : Unit = {

28 if (n == 0) ()

2 else {

3 println(s"Visiting: $n $url")

31 val page = get_page(url)

» print_str(email_pattern.findAllIn(page).mkString("\n"))
3 for (u <- get_all URLs(page).par) crawl(u, n - 1)

£ }

s}

36

7 // staring URL for the crawler

s val startURL = """http://www.inf.kcl.ac.uk/staff/urbanc"""
39

o crawl(startURL, 3)

Figure 3: A small email harvester—whenever we download a web-page, we
also check whether it contains any email addresses. For this we use the regular
expression email_pattern in Line 16. The main change is in Line 32 where all
email addresses that can be found in a page are printed.

Lets start with what we mean by strings. Strings (they are also sometimes
referred to as words) are lists of characters drawn from an alphabet. If nothing
else is specified, we usually assume the alphabet consists of just the lower-case
letters a, b, ..., z. Sometimes, however, we explicitly restrict strings to contain,
for example, only the letters a and b. In this case we say the alphabet is the set
{a,b}.

There are many ways how we can write down strings. In programming
languages, they are usually written as “hello” where the double quotes indicate
that we dealing with a string. Essentially, strings are lists of characters which
can be written for example as follows

[he L1 0]

The important point is that we can always decompose strings. For example, we
will often consider the first character of a string, say 4, and the “rest” of a string
say “ello” when making definitions about strings. There are some subtleties
with the empty string, sometimes written as ”” but also as the empty list of
characters []. Two strings, for example s; and s, can be concatenated, which we
write as s1@sy. Suppose we are given two strings “foo” and “bar”, then their
concatenation gives “foobar”.

We often need to talk about sets of strings. For example the set of all strings
over the alphabet {4, ... z} is

Va 7 7 Ilb ” o I’ 7 V4 7 ” b 7 ” ” V4 V4
{””, "a”, "b”, "c”,...,"2z", "aa”, "ab”, "ac”, ..., "aaa”, ...}

Any set of strings, not just the set-of-all-strings, is often called a language. The
idea behind this choice of terminology is that if we enumerate, say, all word-
s/strings from a dictionary, like

{"the”, "of ", "milk”, "name”, "antidisestablishmentarianism”, ...}

then we have essentially described the English language, or more precisely all
strings that can be used in a sentence of the English language. French would
be a different set of strings, and so on. In the context of this course, a language
might not necessarily make sense from a natural language point of view. For
example the set of all strings shown above is a language, as is the empty set (of
strings). The empty set of strings is often written as @ or { }. Note that thereis a
difference between the empty set, or empty language, and the set that contains
only the empty string {””}: the former has no elements, whereas the latter has
one element.

Before we expand on the topic of regular expressions, let us review some
operations on sets. We will use capital letters A, B, .. . to stand for sets of strings.
The union of two sets is written as usual as A U B. We also need to define the
operation of concatenating two sets of strings. This can be defined as

A@B def {81@52|S1 € ANsy € B}

which essentially means take the first string from the set A and concatenate it
with every string in the set B, then take the second string from A do the same
and so on. You might like to think about what this definition means in case A
or B is the empty set.

We also need to define the power of a set of strings, written as A" with n
being a natural number. This is defined inductively as follows

AYE)y
& A@An

-

An+1

Finally we need the star of a set of strings, written A*. This is defined as the
union of every power of A” with n > 0. The mathematical notation for this
operation is

A* d:ef U A?l
0<n

This definition implies that the star of a set A contains always the empty string
(that is A”), one copy of every string in A (that is A'), two copies in A (that is
A?) and so on. In case A = {”a”} we therefore have

A* — {r///l ”ﬂ,’, //aa//, ”aaﬂ”, . }

Be aware that these operations sometimes have quite non-intuitive properties,
for example

AU =A A@B # B@A o ={"}
AUA=A ARD = P@A = @ {7y = {1
AUB=BUA A@{""}={"1@A=A A*={""JUA- A*

My Fascination for Regular Expressions

10

