
Coursework 3

This coursework is worth 4% and is due on 13 December at 16:00. You are asked
to implement a compiler for the WHILE language that targets the assembler
language provided by the Jasmin. This assembler is available from

http://jasmin.sourceforge.net

There is a user guide for Jasmin

http://jasmin.sourceforge.net/guide.html

and also a description of some of the instructions that the JVM understands

http://jasmin.sourceforge.net/instructions.html

If you generated a correct assembler file for Jasmin, for example loops.j, you
can use

java -jar jasmin-2.4/jasmin.jar loops.j

in order to translate it to Java byte code. The resulting class file can be run with

java loops

where you potentially need to give the path to the class file.

You need to submit a document containing the answers for the two questions
below. You can do the implementation in any programming language you like,
but you need to submit the source code with which you answered the questions.
Otherwise the submission will not be counted. However, the coursework will
only be judged according to the answers. You can submit your answers in a
txt-file or as pdf.

Question 1 (marked with 2%)

You need to lex and parse WHILE programs and submit the assembler instruc-
tions for the Fibonacci program and for the program you submitted in Course-
work 2 in Question 3. The latter should be so modified that a user can input the
upper bound on the console (in the original question it was fixed to 100).

1

http://jasmin.sourceforge.net
http://jasmin.sourceforge.net/guide.html
http://jasmin.sourceforge.net/instructions.html


Question 2 (marked with 2%)

Extend the syntax of you language so that it contains also for-loops, like

for Id := AExp upto AExp do Block

The intended meaning is to first assign the variable Id the value of the first
arithmetic expression, then go through the loop, at the end increase the value
of the variable by 1, and finally test wether the value is not less or equal to the
value of the second arithmetic expression. For example the following instance
of a for-loop is supposed to print out the numbers 2, 3, 4.

for i := 2 upto 4 do {

write i

}

There are two ways how this can be implemented: one is to adapt the code
generation part of the compiler and generate specific code for for-loops; the
other is to translate the abstract syntax tree of for-loops into an abstract syntax
tree using existing language constructs. For example the loop above could be
translated to the following while-loop:

i := 2;

while (i <= 4) do {

write i;

i := i + 1;

}

In this question you are supposed to give the assembler instructions for the for
the program

for i := 1 upto 10000 do {

for i := 1 upto 10000 do {

skip

}

}

Further Information

The Java infrastructure unfortunately does not contain an assembler out-of-
the-box (therefore you need to download the additional package Jasmin—see
above). But it does contain a disassembler, called javap. A dissembler does
the “opposite” of an assembler: it generates readable assembler code from Java
byte code. Have a look at the following example. Compile using the usual Java
compiler, the simple Hello World program below:

2



1 class HelloWorld {

2 public static void main(String [] args) {

3 System.out.println("Hello World!");

4 }

5 }

You can use the command

javap -v HelloWorld

in order to see the assembler instructions of the Java byte code that has been
generated for this program. You can compare this with the code generated for
the Scala version of Hello World.

1 object HelloWorld {

2 def main(args: Array[String ]) {

3 println("Hello World!")

4 }

5 }

Library Functions

You need to generate code for the instruction write and read. This will require
to add some “library” functions to your generated code. The first command
even needs two versions, because you might want to write out an integer or a
string. The Java byte code will need two separate functions for this. For writing
out an integer, you can use the code

.method public static write(I)V

.limit locals 5

.limit stack 5

iload 0

getstatic java/lang/System/out Ljava/io/PrintStream;

swap

invokevirtual java/io/PrintStream/println(I)V

return

.end method

This function will invoke Java’s println function for integers. Then if you need
to generate code for write x where x is an integer variable, you can generate

iload n

invokestatic XXX/XXX/write(I)V

3



where n is the index where the value of the variable x is stored. The XXX/XXX

needs to be replaced with the class name which you use to generate the code
(for example fib/fib in case of the Fibonacci numbers).

Writing out a string is similar. The corresponding library function is

.method public static writes(Ljava/lang/String ;)V

.limit stack 2

.limit locals 2

getstatic java/lang/System/out Ljava/io/PrintStream;

aload 0

invokevirtual java/io/PrintStream/println(Ljava/lang/String ;)V

return

.end method

and the code that needs to be generated for write "some string" commands
is

ldc "some_string"

invokestatic XXX/XXX/writes(Ljava/lang/String ;)V

Again you need to adjust the XXX/XXX part in each call.

4


