Handout 7 (Compilation)

The purpose of a compiler is to transform a program a human can read and
write into code the machine can run as fast as possible. The fastest code would
be machine code the CPU can run directly, but it is often good enough for im-
proving the speed of a program to target a virtual machine instead. This pro-
duces not the fastest possible code, but code that is often pretty fast. This way
of producing code has also the advantage that the virtual machine takes care of
things a compiler would normally need to take care of (hairy things like explicit
memory management).

As a first example in this module we will implement a compiler for the very
simple WHILE-language that we parsed in the last lecture. The compiler will
target the Java Virtual Machine (JVM), but not directly. Pictorially the compiler
will work as follows:

Jasmin /
Krakatau

compiler

The input will be WHILE-programs; the output will be assembly files (with
the file extension .j). Assembly files essentially contain human-readable low-
level code, meaning they are not just bits and bytes, but rather something you
can read and understand —with a bit of practice of course. An assembler will
then translate the assembly files into unreadable class- or binary-files the JVM
or CPU can run. Unfortunately, the Java ecosystem does not come with an as-
sembler which would be handy for our compiler-endeavour (unlike Microsoft’s
Common Language Infrastructure for the .Net platform which has an assem-
bler out-of-the-box). As a substitute we shall use the 3rd-party programs Jasmin
and Krakatau

® http://jasmin.sourceforge.net

® https://github.com/Storyyeller/Krakatau

The first is a Java program and the second a program written in Python. Each
of them allow us to generate assembly files that are still readable by humans,
as opposed to class-files which are pretty much just (horrible) zeros and ones.
Jasmin (respectively Krakatau) will then take our assembly files as input and
generate the corresponding class-files for us.

What is good about the JVM is that it is a stack-based virtual machine, a fact
which will make it easy to generate code for arithmetic expressions. For ex-
ample when compiling the expression 1 + 2 we need to generate the following
three instructions

© Christian Urban, King’s College London, 2017, 2018, 2019, 2020

http://jasmin.sourceforge.net
https://github.com/Storyyeller/Krakatau

ldc 1
ldc 2
iadd

The first instruction loads the constant 1 onto the stack, the next one loads 2, the
third instruction adds both numbers together replacing the top two elements
of the stack with the result 3. For simplicity, we will consider throughout only
arithmetic involving integer numbers. This means our main JVM instructions
for arithmetic will be iadd, isub, imul, idiv and so on. The i stands for integer
instructions in the JVM (alternatives are d for doubles, 1 for longs and £ for
floats etc).
Recall our grammar for arithmetic expressions (E is the starting symbol):

E:=T+E | T—-E | T
T:= FxT | F\T | F
F:= (E) | Id | Num

where Id stands for variables and Num for numbers. For the moment let us
omit variables from arithmetic expressions. Our parser will take this grammar
and given an input program produce an abstract syntax tree. For example we
obtain for the expression 1 + ((2%3) + (4 — 3)) the following tree.

|

N

1 +

* —_
2 3 43
To generate JVM code for this expression, we need to traverse this tree in post-
order fashion and emit code for each node—this traversal in post-order fashion

will produce code for a stack-machine (which is what the JVM is). Doing so for
the tree above generates the instructions

ldc 1
ldc 2
ldc 3
imul
ldc 4
ldc 3
isub
iadd
iadd

If we “run” these instructions, the result 8 will be on top of the stack (I leave this
to you to verify; the meaning of each instruction should be clear). The result
being on the top of the stack will be an important convention we always observe
in our compiler. Note, that a different bracketing of the expression, for example
(1+(2%3)) + (4 — 3), produces a different abstract syntax tree and thus also a
different list of instructions.

Generating code in this post-order-traversal fashion is rather easy to imple-
ment: it can be done with the following recursive compile-function, which takes
the abstract syntax tree as an argument:

compile(n) & 1den

compile(ay + ap) &of compile(ay) @ compile(ay) @ iadd
compile(a; — ay) o compile(ay) @ compile(ay) @ isub
compile(ay * ap) o compile(ay) @ compile(ay) @ imul
compile(ay\ay) et compile(ay) @ compile(ay) @ idiv

This is all fine, but our arithmetic expressions can contain variables and we
have not considered them yet. To fix this we will represent our variables as
local variables of the JVM. Essentially, local variables are an array or pointers to
memory cells, containing in our case only integers. Looking up a variable can
be done with the instruction

iload index

which places the content of the local variable index onto the stack. Storing the
top of the stack into a local variable can be done by the instruction

istore index

Note that this also pops off the top of the stack. One problem we have to over-
come, however, is that local variables are addressed, not by identifiers (like x,
foo and so on), but by numbers (starting from 0). Therefore our compiler needs
to maintain a kind of environment where variables are associated to numbers.
This association needs to be unique: if we muddle up the numbers, then we
essentially confuse variables and the consequence will usually be an erroneous
result. Our extended compile-function for arithmetic expressions will therefore
take two arguments: the abstract syntax tree and an environment, E, that maps
identifiers to index-numbers.

compile(n, E) & 1den

compile(ay + ap, E) oo compile(ay, E) @ compile(ay, E) @ iadd
compile(ay — ap, E) &t compile(ay, E) @ compile(ay, E) @ isub
compile(ay * ay, E) & compile(ay, E) @ compile(ay, E) @ imul
compile(ai\ay, E) o compile(ay, E) @ compile(ay, E) @ idiv
compile(x, E) & iload E(x)

In the last line we generate the code for variables where E(x) stands for looking
up the environment to which index the variable x maps to. This is similar to the
interpreter we saw earlier in the module, which also needs an environment: the
difference is that the interpreter maintains a mapping from variables to current
values (what is the currently the value of a variable?), while compilers need
a mapping from variables to memory locations (where can I find the current
value for the variable in memory?).

There is a similar compile-function for boolean expressions, but it includes
a “trick” to do with if- and while-statements. To explain the issue let us first
describe the compilation of statements of the WHILE-language. The clause for
skip is trivial, since we do not have to generate any instruction

compile(skip, E) def ([l,E)

whereby [] is the empty list of instructions. Note that the compile-function for
statements returns a pair, a list of instructions (in this case the empty list) and an
environment for variables. The reason for the environment is that assignments
in the WHILE-language might change the environment—clearly if a variable is
used for the first time, we need to allocate a new index and if it has been used
before, then we need to be able to retrieve the associated index. This is reflected
in the clause for compiling assignments, say x := a:

compile(x :=a,E) % (compile(a, E) @ istore index, E')

We first generate code for the right-hand side of the assignment (that is the
arithmetic expression 4) and then add an istore-instruction at the end. By
convention running the code for the arithmetic expression a will leave the re-
sult on top of the stack. After that the istore-instruction, the result will be
stored in the index corresponding to the variable x. If the variable x has been
used before in the program, we just need to look up what the index is and re-
turn the environment unchanged (that is in this case E’ = E). However, if this
is the first encounter of the variable x in the program, then we have to aug-
ment the environment and assign x with the largest index in E plus one (that is
E' = E(x + largest_index + 1)). To sum up, for the assignment x := x + 1 we
generate the following code snippet

iload ny
ldc 1
iadd
istore ny

where 1y is the index (or pointer to the memory) for the variable x. The Scala
code for looking-up the index for the variable is as follow:

index = E.getOrElse(x, |E|)

This implements the idea that in case the environment E contains an index for
x, we return it. Otherwise we “create” a new index by returning the size |E| of

the environment (that will be an index that is guaranteed not to be used yet).
In all this we take advantage of the JVM which provides us with a potentially
limitless supply of places where we can store values of variables.

A bit more complicated is the generation of code for if-statements, say

if b then cs; else csp

where bis aboolean expression and where both cs; /, are the statements for each
of the if-branches. Let us assume we already generated code for b and and the
two if-branches csq ;. Then in the true-case the control-flow of the program
needs to behave as

=>] code of b =P code of csy code of csp T

jump

where we start with running the code for b; since we are in the true case we
continue with running the code for cs;. After this however, we must not run
the code for csy, but always jump to after the last instruction of cs, (the code
for the else-branch). Note that this jump is unconditional, meaning we always
have to jump to the end of csy. The corresponding instruction of the JVM is
goto. In case b turns out to be false we need the control-flow

=] code of b code of ¢sq code of cs; f=p

conditional jump

where we now need a conditional jump (if the if-condition is false) from the
end of the code for the boolean to the beginning of the instructions cs;. Once
we are finished with running cs, we can continue with whatever code comes
after the if-statement.

The goto and the conditional jumps need addresses to where the jump should
go. Since we are generating assembly code for the JVM, we do not actually have
to give (numeric) addresses, but can just attach (symbolic) labels to our code.
These labels specify a target for a jump. Therefore the labels need to be unique,
as otherwise it would be ambiguous where a jump should go to. A label, say L,
is attached to assembly code like

I8
instr_1
instr_2

where the label needs to be followed by a colon. The task of the assembler
(in our case Jasmin or Krakatau) is to resolve the labels to actual (numeric)
addresses, for example jump 10 instructions forward, or 20 instructions back-
wards.

Recall the “trick” with compiling boolean expressions: the compile-function
for boolean expressions takes three arguments: an abstract syntax tree, an en-
vironment for variable indices and also the label, lab, to where an conditional
jump needs to go. The clause for the expression a; = ap, for example, is as
follows:

compile(a; = ay, E, lab) def
compile(ay, E) @ compile(ay, E) @ if _icmpne lab

where we are first generating code for the subexpressions a; and a;. This will
mean after running the corresponding code there will be two integers on top
of the stack. If they are equal, we do not have to do anything (except for pop-
ping them off from the stack) and just continue with the next instructions (see
control-flow of ifs above). However if they are not equal, then we need to (con-
ditionally) jump to the label lab. This can be done with the instruction

if_icmpne lab

To sum up, the third argument in the compile function for booleans spec-
ifies where to jump, in case the condition is not true. I leave it to you to ex-
tend the compile-function for the other boolean expressions. Note that we need
to jump whenever the boolean is not true, which means we have to “negate”
the jump condition—equals becomes not-equal, less becomes greater-or-equal.
Other jump instructions for boolean operators are

= if_icmpeq
< = if_icmpge
< = if_icmpgt

and so on. If you do not like this design (it can be the source of some nasty,
hard-to-detect errors), you can also change the layout of the code and first give
the code for the else-branch and then for the if-branch. However in the case of
while-loops this “upside-down-inside-out” way of generating code still seems
the most convenient.

We are now ready to give the compile function for if-statements —remember
this function returns for statements a pair consisting of the code and an envi-
ronment:

. def
compile(if b then csy else csy, E) =

Lifse (fresh label)
Lifena (fresh label)

(is1, E') = compile(csy, E)
(isp, E"") = compile(csy, E')
(compile(b, E, Liise)

@ iSl

@ goto Lipng

@ Lifelse :

@ iSz

@ Lifend “ EN)

In the first two lines we generate two fresh labels for the jump addresses (just
before the else-branch and just after). In the next two lines we generate the
instructions for the two branches, is; and isy. The final code will be first the
code for b (including the label just-before-the-else-branch), then the goto for
after the else-branch, the label Lz, followed by the instructions for the else-
branch, followed by the after-the-else-branch label. Consider for example the
if-statement:

if 1 = 1 then x := 2 else y := 3
The generated code is as follows:

1 ldc 1

2 ldc 1

3 if_icmpne L_ifelse —
4 ldc 2

5 istore O

6 goto L_ifend —
7 L_ifelse: (
8 ldc 3

9 istore 1

10 L_ifend: _

The first three lines correspond to the the boolean expression 1 = 1. The jump
for when this boolean expression is false is in Line 3. Lines 4-6 corresponds to
the if-branch; the else-branch is in Lines 8 and 9.

Note carefully how the environment E is threaded through the recursive
calls of compile. The function receives an environment E, but it might extend
it when compiling the if-branch, yielding E’. This happens for example in the
if-statement above whenever the variable x has not been used before. Similarly
with the environment E” for the second call to compile. E” is also the environ-
ment that needs to be returned as part of the answer.

The compilation of the while-loops, say while b do cs, is very similar. In case
the condition is true and we need to do another iteration, and the control-flow
needs to be as follows

ﬁ code of b ==l code of cs =

Whereas if the condition is not true, we need to jump out of the loop, which
gives the following control flow.

=P} code of b —1 code of cs |-)

Again we can use the compile-function for boolean expressions to insert the ap-
propriate jump to the end of the loop (label L,; below).

compile(while b do cs, E) def

Lypegin (fresh label)
Lyend (fresh label)

(is, E") = compile(csy, E)
(waegin :

@ compile(b, E, Lyyeng)
@is

@ goto Lyypegin

@ Lyend 3 El)

I'let you go through how this clause works. As an example you can consider
the while-loop

while x <= 10 do x := x + 1

yielding the following code

1 L_wbegin: (—
2 iload O
3 ldc 10
4 if_icmpgt L_wend
iload O
ldc 1
iadd
istore O
goto L_wbegin ——
0 L_wend: (

© ® N o W

As said, I leave it to you to decide whether the code implements the usual con-
trolflow of while-loops.

Next we need to consider the WHILE-statement write x, which can be used
to print out the content of a variable. For this we shall use a Java library func-
tion. In order to avoid having to generate a lot of code for each write-command,

we use a separate helper-method and just call this method with an appropriate
argument (which of course needs to be placed onto the stack). The code of the
helper-method is as follows.

1 .method public static write(I)V
2 .limit locals 1

3 .limit stack 2

4 getstatic java/lang/System/out Ljava/io/PrintStream;
5 iload 0

6 invokevirtual java/io/PrintStream/println(I)V
7 return

s .end method

The first line marks the beginning of the method, called write. It takes a sin-
gle integer argument indicated by the (I) and returns no result, indicated by
the V (for void). Since the method has only one argument, we only need a sin-
gle local variable (Line 2) and a stack with two cells will be sufficient (Line
3). Line 4 instructs the JVM to get the value of the member out from the class
java/lang/System. It expects the value to be of type java/io/PrintStream. A
reference to this value will be placed on the stack.! Line 5 copies the integer
we want to print out onto the stack. In the line after that we call the method
println (from the class java/io/PrintStream). We want to print out an inte-
ger and do not expect anything back (that is why the type annotation is (I)V).
The return-instruction in the next line changes the control-flow back to the
place from where write was called. This method needs to be part of a header
that is included in any code we generate. The helper-method write can be in-
voked with the two instructions

iload E(x)
invokestatic XXX/XXX/write(I)V

where we first place the variable to be printed on top of the stack and then call
write. The XXX need to be replaced by an appropriate class name (this will be
explained shortly).

By generating code for a WHILE-program, we end up with a list of (JVM as-
sembly) instructions. Unfortunately, there is a bit more boilerplate code needed
before these instructions can be run. Essentially we have to enclose them inside
a Java main-method. The corresponding code is shown in Figure 1. This boil-
erplate code is very specific to the JVM. If we target any other virtual machine
or a machine language, then we would need to change this code. Interesting
are the Lines 5 and 6 where we hardwire that the stack of our programs will
never be larger than 200 and that the maximum number of variables is also 200.
This seem to be conservative default values that allow is to run some simple
WHILE-programs. In a real compiler, we would of course need to work harder
and find out appropriate values for the stack and local variables.

!Note the syntax L ..; for the PrintStrean type is not an typo. Somehow the designers of
Jasmin decided that this syntax is pleasing to the eye. So if you wanted to have strings in your
Jasmin code, you would need to write Ljava/lang/String; . If you want arrays of one dimension,

1 .class public XXX.XXX
> .super java/lang/Object

4+ .method public static main([Ljava/lang/String;)V

5 .limit locals 200

6 .limit stack 200

7

8 ..here comes the compiled code..
9

10 return

n .end method

Figure 1: The boilerplate code needed for running generated code. It hardwires
limits for stack space and for the number of local variables.

To sum up, in Figure 2 is the complete code generated for the slightly non-
sensical program

x := 1 + 2;
write x

I let you read the code and make sure the code behaves as expected. Having
this code at our disposal, we need the assembler to translate the generated code
into JVM bytecode (a class file). This bytecode is then understood by the JVM
and can be run by just invoking the java-program. AgainIlet you do the work.

Arrays

Maybe a useful addition to the WHILE-language would be arrays. This would
allow us to generate more interesting WHILE-programs by translating BF***
programs into equivalent WHILE-code. Therefore in this section let us have a
look at how we can support the following three constructions

new (arr [15000])
x 1= 3 + arr[3 + y]
arr[42 * n] :=

The first construct is for creating new arrays. In this instance the name of the
array is arr and it can hold 15000 integers. We do not support “dynamic” ar-
rays, that is the size of our arrays will always be fixed. The second construct
is for referencing an array cell inside an arithmetic expression—we need to be
able to look up the contents of an array at an index determined by an arithmetic

then use [..; two dimensions, use [[.. and so on. Looks all very ugly to my eyes.

10

.class public test.test
.super java/lang/Object

.method public static write(I)V
.limit locals 1
.limit stack 2
getstatic java/lang/System/out Ljava/io/PrintStream;
iload O
invokevirtual java/io/PrintStream/println(I)V
return

.end method

.method public static main([Ljava/lang/String;)V
.1limit locals 200
.1limit stack 200
ldc 1
ldc 2
iadd
istore O

write XI iload 0

invokestatic test/test/write(I)V
return

.end method

x:=1+2

Figure 2: The generated code for the test program x := 1 + 2; write x. This
code can be processed by a Java assembler producing a class-file, which can
then be run by the java-program.

11

expression. Similarly in the line below, we need to be able to update the content
of an array at a calculated index.

For creating a new array we can generate the following three JVM instruc-
tions:

ldc number
newarray int
astore loc_var

First we need to put the size of the array onto the stack. The next instruction
creates the array. In this case the array contains ints. With the last instruction
we can store the array as a local variable (like the “simple” variables from the
previous section). The use of a local variable for each array allows us to have
multiple arrays in a WHILE-program. For looking up an element in an array
we can use the following JVM code

aload loc_var
index_aexp
iaload

The first instruction loads the “pointer”, or local variable, to the array onto the
stack. Then we have some instructions calculating the index where we want
to look up the array. The idea is that these instructions will leave a concrete
number on the top of the stack, which will be the index into the array we need.
Finally we need to tell the JVM to load the corresponding element onto the
stack. Updating an array at an index with a value is as follows.

aload loc_var
index_aexp
value_aexp
iastore

Again the first instruction loads the local variable of the array onto the stack.
Then we have some instructions calculating the index where we want to update
the array. After that come the instructions for with which value we want to
update the array. The last line contains the instruction for updating the array.

Next we need to modify our grammar rules for our WHILE-language: it
seems best to extend the rule for factors in arithmetic expressions with a rule
for looking up an array.

E:=T+E | T—E | T

T:= FxT | F\T | F

F:= (E) | Id[E] | Id | Num
——"
new

There is no problem with left-recursion as the E is “protected” by an identifier
and the brackets. There are two new rules for statements, one for creating an
array and one for array assignment:

12

Stmt ;1=
| new(Id[Num])
| Id[E]:=E
With this in place we can turn back to the idea of creating WHILE-programs
by translating BF-programs. This is a relatively easy task because BF has only
eight instructions (we will actually implement seven because we can omit the
read-in instruction from BF). What makes this translation easy is that BF-loops

can be straightforwardly represented as while-loops. The Scala code for the
translation is as follows:

1 def instr(c: Char) : String = c match {

2 case '>' => "ptr := ptr + 1;"

3 case '<' => "ptr := ptr - 1;"

4 case '+' => "mem[ptr] := mem [ptr] + 1;"

5 case '-' => "mem [ptr] := mem [ptr] - 1;"
6 case '.' => "x := mem [ptr]l; write x;"

7 case '[' => "while (mem [ptr] != 0) do {"
5 case ']' => "skip};"

9 case _ => ""

10 }

The idea behind the translation is that BF-programs operate on an array, called
here mem. The BF-memory pointer into this array is represented as the variable
ptr. As usual the BF-instructions > and < increase, respectively decrease, ptr.
The instructions + and - update a cell in mem. In Line 6 we need to first assign a
mem-cell to an auxiliary variable since we have not changed our write functions
in order to cope with writing out any array-content directly. Lines 7 and 8 are
for translating BF-loops. Line 8 is interesting in the sense that we need to gen-
erate a skip instruction just before finishing with the closing "}". The reason is
that we are rather pedantic about semicolons in our WHILE-grammar: the last
command cannot have a semicolon—adding a skip works around this snag.

Putting this all together and we can generate WHILE-programs with more
than 15K JVM-instructions; run the compiled JVM code for such programs and
marvel at the output...

...Hooooray, after a few more tweaks we can finally run the BF-mandelbrot pro-
gram on the JVM (after nearly 10 minutes of parsing the corresponding WHILE-
program; the size of the resulting class file is around 32K —not too bad). The
generation of the picture completes within 20 or so seconds. Try replicating
this with an interpreter! The good point is that we now have a sufficiently com-
plicated program in our WHILE-language in order to do some benchmarking.
Which means we now face the question about what to do next...

Optimisations & Co

Every compiler that deserves its name has to perform some optimisations on
the code: if we put in the extra effort of writing a compiler for a language, then

13

obviously we want to have our code to run as fast as possible. So we should
look into this in more detail.

There is actually one aspect in our generated code where we can make easily
efficiency gains. This has to do with some of the quirks of the JVM. Whenever
we push a constant onto the stack, we used the JVM instruction 1dc some_const.
This is a rather generic instruction in the sense that it works not just for integers
but also for strings, objects and so on. What this instruction does is putting the
constant into a constant pool and then uses an index into this constant pool. This
means 1dc will be represented by at least two bytes in the class file. While this
is a sensible strategy for “large” constants like strings, it is a bit of overkill for
small integers (which many integers will be when compiling a BF-program).
To counter this “waste”, the JVM has specific instructions for small integers,
for example

® jiconst_O,...,iconst_b
® bipush n

where the n is bipush is between -128 and 128. By having dedicated instruc-
tions such as iconst_0 to iconst_5 (and iconst_ml), we can make the gen-
erated code size smaller as these instructions only require 1 byte (as opposed
the generic 1dc which needs 1 byte plus another for the index into the constant
pool). While in theory the use of such special instructions should make the
code only smaller, it actually makes the code also run faster. Probably because
the JVM has to process less code and uses a specific instruction for the under-
lying CPU. The story with bipush is slightly different, because it also uses two
bytes—so it does not necessarily result in a reduction of code size. Instead, it
probably uses a specific instruction in the underlying CPU that makes the JVM
code run faster.? This means when generating code for pushing constants onto
the stack, we can use the following Scala helper-function

def compile_num(i: Int) =
if (0 <= i && i <= 5) i"iconst_$i" else
if (-128 <= i && i <= 127) i"bipush $i"
else i"ldc $i"

It generates the more efficient instructions when pushing a small integer con-
stant onto the stack. The default is 1dc for any other constants.

The JVM also has such special instructions for loading and storing the first
three local variables. The assumption is that most operations and arguments
in a method will only use very few local variables. So we can use the following
instructions:

® jload_0O,...,iload_3

® istore_0,..., istore_3

2This is all “probable” because I have not read the 700 pages of JVM documentation by Oracle
and also have no clue how the JVM is implemented.

14

® aload_0O,...,aload_3

® astore_0,..., astore_3

Having implemented these optimisations, the code size of the BF-Mandelbrot
program reduces and also the class-file runs faster (the parsing part is still very
slow). According to my very rough experiments:

class-size runtime

Mandelbrot:
unoptimised: 33296 21 secs
optimised: 21787 16 secs

Quite good! Such optimisations are called peephole optimisations, because they
involve changing one or a small set of instructions into an equivalent set that
has better performance.

If you look careful at our generated code you will quickly find another source
of inefficiency in programs like

X 1= ...
write x

where our code first calculates the new result the for x on the stack, then pops
off the result into a local variable, and after that loads the local variable back
onto the stack for writing out a number.

istore O
iload O

If we can detect such situations, then we can leave the value of x on the stack
with for example the much cheaper instruction dup. Now the problem with
this optimisation is that it is quite easy for the snippet above, but what about
instances where there is further WHILE-code in between these two statements?
Sometimes we will be able to optimise, sometimes we will not. The compiler
needs to find out which situation applies. This can quickly become much more
complicated. So we leave this kind of optimisations here and look at something
more interesting and possibly surprising.

As you might have seen, the compiler writer has a lot of freedom about
how to generate code from what the programmer wrote as program. The only
condition is that generated code should behave as expected by the programmer.
Then all is fine with the code above...mission accomplished! But sometimes the
compiler writer is expected to go an extra mile, or even miles and change(!) the
meaning of a program. Suppose we are given the following WHILE-program:

new (arr [10]);
arr[14] := 3 + arr([13]

15

Admittedly this is a contrived program, and probably not meant to be like this
by any sane programmer, but it is supposed to make the following point: The
program generates an array of size 10, and then tries to access the non-existing
element at index 13 and even updating the element with index 14. Obviously
this is baloney. Still, our compiler generates code for this program without
any questions asked. We can even run this code on the JVM...of course the
result is an exception trace where the JVM yells at us for doing naughty things.’
Now what should we do in such situations? Over- and underflows of indices
are notoriously difficult to detect statically (at compiletime). So it might seem
raising an exception at run-time like the JVM is the best compromise.

Well, imagine we do not want to rely in our compiler on the JVM for produc-
ing an annoying, but safe exception trace, rather we want to handle such situa-
tions ourselves according to what we think should happen in such cases. Let us
assume we want to handle them in the following way: if the programmer access
a field out-of-bounds, we just return a default 0, and if a programmer wants to
update an out-of-bounds field, we want to “quietly” ignore this update. One
way to achieve this would be to rewrite the WHILE-programs and insert the
necessary if-conditions for safely reading and writing arrays. Another way is
to modify the code we generate.

index_aexp
aload loc_var
dup2
arraylength
if_icmple L1
pop2
iconst_O
goto L2

il 8
swap
iaload

L2:

3Still this is much better than C, for example, where such errors are not prevented and as a
result insidious attacks can be mounted against such kind C-programs. I assume everyone has
heard about Buffer Overflow Attacks.

16

index_aexp
aload loc_var
dup2
arraylength
if_icmple L1
pop2
goto L2

L1:
swap
value_aexp
iastore

L2:

goto_w problem solved for too large jumps

17

index array
index_aexp aload index
dup2
array_len array
index arraylength |idex
array _ array
index index
if_icmple
array array
index index
swap pop2
index
array
iconst_0O
iaload
0
array_elem

18

