Automata and Formal Languages (7)

Email: christian.urban at kcl.ac.uk Office: S1.27 (1st floor Strand Building) Slides: KEATS (also home work is there)

CFGs

A context-free grammar (CFG) G consists of:

- a finite set of nonterminal symbols (upper case)
- a finite terminal symbols or tokens (lower case)
- a start symbol (which must be a nonterminal)
- a set of rules

$A \rightarrow rhs_1 | rhs_2 | \dots$

where rhs are sequences involving terminals and nonterminals (can also be empty).

CFGs

A context-free grammar (CFG) G consists of:

- a finite set of nonterminal symbols (upper case)
- a finite terminal symbols or tokens (lower case)
- a start symbol (which must be a nonterminal)
- a set of rules

$A \rightarrow rhs_1 | rhs_2 | \dots$

where rhs are sequences involving terminals and nonterminals (can also be empty).

Hierarchie of Languages

Recall that languages are sets of strings.

all languages decidable languages context sensitive languages context-free languages regular languages

A grammar for numbers:

 $N \rightarrow N \cdot N \mid 0 \mid 1 \mid \dots \mid 9$

Unfortunately left-recursive (and ambiguous). A problem for recursive descent parsers (e.g. parser combinators).

A grammar for numbers:

 $N \rightarrow N \cdot N \mid 0 \mid 1 \mid \dots \mid 9$

Unfortunately left-recursive (and ambiguous).

A problem for recursive descent parsers (e.g. parser combinators).

A non-left-recursive grammar for numbers

 $N \rightarrow 0 \cdot N \mid 1 \cdot N \mid \dots \mid 0 \mid 1 \mid \dots \mid 9$

Chomsky Normal Form

All rules must be of the form

A ightarrow a

or

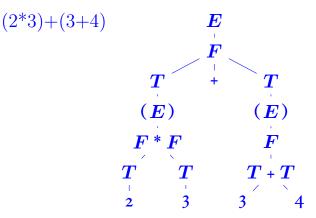
 $A \rightarrow B \cdot C$

AFL 07, King's College London, 13. November 2013 - p. 5/8

CYK Algorithm

- $S \rightarrow N \cdot P$
- $P \rightarrow V \cdot N$
- $N \rightarrow N \cdot N$
- $oldsymbol{N}
 ightarrow$ students | Jeff | geometry | trains $oldsymbol{V}
 ightarrow$ trains

Jeff trains geometry students



- runtime is $O(n^3)$
- grammars need to be transferred into CNF

AFL 07, King's College London, 13. November 2013 - p. 7/8

Parse Trees

AFL 07, King's College London, 13. November 2013 – p. 8/8

Ambiguous Grammars

A CFG is **ambiguous** if there is a string that has at least parse trees.

\boldsymbol{E}	\rightarrow	num_token
\boldsymbol{E}	\rightarrow	$oldsymbol{E}oldsymbol{\cdot}+oldsymbol{\cdot}oldsymbol{E}$
E	\rightarrow	$E \cdot - \cdot E$
E	\rightarrow	$E \cdot * \cdot E$
\boldsymbol{E}	\rightarrow	$(\cdot E \cdot)$

1 + 2 * 3 + 4

AFL 07, King's College London, 13. November 2013 - p. 9/8

Dangling Else

Another ambiguous grammar:

$egin{array}{rcl} E & ightarrow & ext{if E then E} \ & & & ext{if E then E else E} \ & & & ext{id} \end{array}$

if a then if **x** then **y** else c

AFL 07, King's College London, 13. November 2013 - p. 10/8

A CFG Derivation

- Segin with a string with only the start symbol S
- Replace any non-terminal X in the string by the right-hand side of some production $X \rightarrow rhs$
- Repeat 2 until there are no non-terminals

$S \rightarrow \ldots \rightarrow \ldots \rightarrow \ldots \rightarrow \ldots$