Automata and Formal Languages

Email: christian.urban at kcl.ac.uk

Office: S1.27 (1st floor Strand Building)

Slides: KEATS (also home work is there)

There are more problems, than there are programs.

There are more problems, than there are programs.

There must be a problem for which there is no program.

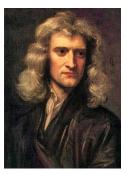
Subsets

If $A \subseteq B$ then A has fewer elements than B

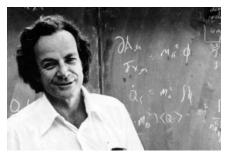
$$A \subseteq B$$
 and $B \subseteq A$
then $A = B$

3 elements

Newton vs Feynman



classical physics



quantum physics

The Goal of the Talk

 show you that something very unintuitive happens with very large sets

 convince you that there are more problems than programs

$$B = \{ \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc \}$$

$$A = \{ \circ, \circ, \bullet \}$$

$$|A| = 5, |B| = 3$$

$$B = \{ \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc \}$$
 $A = \{ \bigcirc, \bigcirc, \bigcirc, \bigcirc \}$

then
$$|A| \leq |B|$$

$$B = \{ 0, 0, 0, 0, 0 \}$$
 $A = \{ 0, 0, 0, 0 \}$

for = has to be a **one-to-one** mapping

Cardinality

 $|A| \stackrel{\text{def}}{=}$ "how many elements"

$$A \subseteq B \Rightarrow |A| \le |B|$$

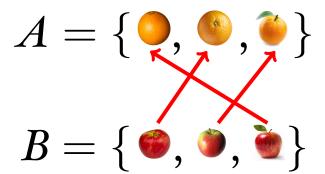
Cardinality

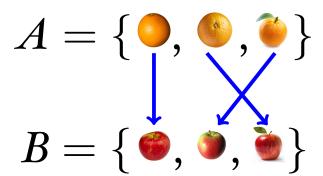
$$|A| \stackrel{\text{def}}{=}$$
 "how many elements"

$$A \subseteq B \Rightarrow |A| \le |B|$$

if there is an injective function $f: A \rightarrow B$ then $|A| \leq |B|$

$$\forall xy. f(x) = f(y) \Rightarrow x = y$$





$$A = \{ igcolon, igcolon, igcolon \}$$
 $B = \{ igcolon, igcolon, igcolon, igcolon \}$

then
$$|A| = |B|$$

Natural Numbers

$$\mathbb{N} \stackrel{\text{\tiny def}}{=} \{0, 1, 2, 3, \dots \}$$

Natural Numbers

$$\mathbb{N} \stackrel{\text{\tiny def}}{=} \{0, 1, 2, 3, \dots \}$$

A is countable iff
$$|A| \leq |\mathbb{N}|$$

First Question

$$|N - \{o\}|$$
 ? $|N|$

$$> or < or = ?$$

First Question

$$|N - \{o\}|$$
 ? $|N|$

$$\geq$$
 or \leq or $=$?

$$x \mapsto x + 1$$
, $|\mathbb{N} - \{0\}| = |\mathbb{N}|$

 $|N - \{0, 1\}|$? |N|

$$|\mathbb{N} - \{0, 1\}|$$
 ? $|\mathbb{N}|$
 $|\mathbb{N} - \mathbb{O}|$? $|\mathbb{N}|$

$$\bigcirc \stackrel{\text{def}}{=} \text{odd numbers} \quad \{1, 3, 5, \dots \}$$

$$|\mathbb{N} - \{0, 1\}|$$
 ? $|\mathbb{N}|$
 $|\mathbb{N} - \mathbb{O}|$? $|\mathbb{N}|$

```
\begin{array}{ll}
O \stackrel{\text{def}}{=} \text{ odd numbers} & \{1, 3, 5, \dots\} \\
\mathbb{E} \stackrel{\text{def}}{=} \text{ even numbers} & \{0, 2, 4, \dots\} \\
\end{array}
```

$|\mathbb{N} \cup -\mathbb{N}|$? $|\mathbb{N}|$

```
\mathbb{N} \stackrel{\text{def}}{=} \text{ positive numbers } \{0, 1, 2, 3, \dots \}-\mathbb{N} \stackrel{\text{def}}{=} \text{ negative numbers } \{0, -1, -2, -3, \dots \}
```

A is countable if there exists an injective $f: A \to \mathbb{N}$

A is uncountable if there does not exist an injective $f: A \to \mathbb{N}$

countable: $|A| \le |\mathbb{N}|$ uncountable: $|A| > |\mathbb{N}|$

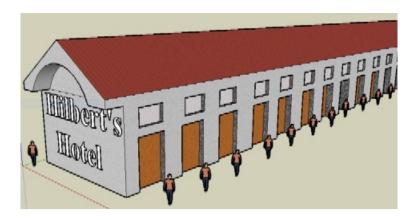
A is countable if there exists an injective $f: A \to \mathbb{N}$

A is uncountable if there does not exist an injective $f: A \to \mathbb{N}$

countable: $|A| \le |\mathbb{N}|$ uncountable: $|A| > |\mathbb{N}|$

Does there exist such an A?

Hilbert's Hotel



• ...has as many rooms as there are natural numbers

I	3	3	3	3	3	3	• • •	
2	I	2	3	4	5	6	7	
3	0	I	0	I	0			
4	7	8	5	3	9			

I	4	3	3	3	3	3	• • •	
2	I	2	3	4	5	6	7	
3	0	I	0	I	0	• • •		
4	7	8	5	3	9			

I	4	3	3	3	3	3		
2	I	3	3	4	5	6	7	
3	0	I	0	I	0	• • •		
4	7	8	5	3	9	• • •		

I	4	3	3	3	3	3		
2	I	3	3	4	5	6	7	
3	0	I	I	I	0	• • •		
4	7	8	5	3	9			

I	4	3	3	3	3	3	• • •	
2	I	3	3	4	5	6	7	
3	0	I	I	I	0			
4	7	8	5	4	9	• • •		

I	4	3	3	3	3	3	• • •	• •
2	I	3	3	4	5	6	7	
3	0	I	I	I	0			
4	7	8	5	4	9	• • •		

$$|\mathbb{N}| < |R|$$

The Set of Problems

 \aleph_{\circ}

	0	I	2	3	4	5	• • •	
I	0	I	0	I	0	I		• •
2	0	0	0	I	I	0	0	
3	0	0	0	0	0			
4	I	I	0	I	I	• • •		

The Set of Problems

 \aleph_{\circ}

	0	I	2	3	4	5	• • •	
I	0	I	0	I	0	I		
2	0	0	0	I	I	0	0	
3	0	0	0	0	0			
4	I	I	0	I	I	• • •		

$$|Progs| = |\mathbb{N}| < |Probs|$$

Halting Problem

Assume a program H that decides for all programs A and all input data D whether

- $H(A,D) \stackrel{\text{def}}{=} \mathbf{I}$ iff A(D) terminates
- $H(A,D) \stackrel{\text{def}}{=} 0$ otherwise

Halting Problem (2)

Given such a program *H* define the following program *C*: for all programs *A*

- $C(A) \stackrel{\text{def}}{=} \circ \operatorname{iff} H(A,A) = \circ$
- $C(A) \stackrel{\text{def}}{=} \text{loops otherwise}$

Contradiction

H(C,C) is either o or I.

$$\bullet \ H(C,C) = I \stackrel{\text{def}H}{\Rightarrow} C(C) \downarrow \stackrel{\text{def}C}{\Rightarrow} H(C,C) = 0$$

•
$$H(C,C) = \circ \stackrel{\text{def } H}{\Rightarrow} C(C) \text{ loops } \stackrel{\text{def } C}{\Rightarrow}$$

$$H(C,C)=1$$

Contradiction in both cases. So *H* cannot exist.

Take Home Points

- there are sets that are more infinite than others
- even with the most powerful computer we can imagine, there are problems that cannot be solved by any program

• in CS we actually hit quite often such problems (halting problem)