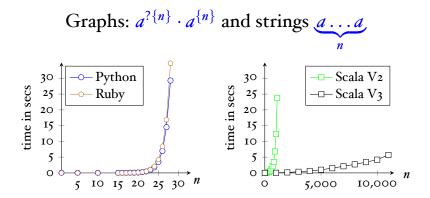
Compilers and Formal Languages (2)

Email: christian.urban at kcl.ac.uk Office: N7.07 (North Wing, Bush House) Slides: KEATS (also homework is there)

Lets Implement an Efficient Regular Expression Matcher



In the handouts is a similar graph for $(a^*)^* \cdot b$ and Java 8.

Evil Regular Expressions

- Regular expression Denial of Service (ReDoS)
- Evil regular expressions
 - $a^{\{n\}} \cdot a^{\{n\}}$
 - (*a**)*
 - $([a-z]^+)^*$ • $(a+a \cdot a)^*$
 - $(a + a \cdot a)^*$ • $(a + a^2)^*$
- sometimes also called catastrophic backtracking

- A **Language** is a set of strings, for example {[], *hello*, *foobar*, *a*, *abc*}
- **Concatenation** of strings and languages

foo @ bar = foobar

$$A @ B \stackrel{\text{def}}{=} \{s_1 @ s_2 \mid s_1 \in A \land s_2 \in B\}$$

For example $A = \{foo, bar\}, B = \{a, b\}$

 $A @ B = \{fooa, foob, bara, barb\}$

The Power Operation

• The *n***th Power** of a language:

$$\begin{array}{rcl} A^{\circ} & \stackrel{\mathrm{def}}{=} & \{[]\} \\ A^{n+1} & \stackrel{\mathrm{def}}{=} & A @ A^{n} \end{array}$$

For example

A^4	=	A @ A @ A @ A	$(@{[]})$
$A^{\scriptscriptstyle \mathrm{I}}$	=	\boldsymbol{A}	$(@{[]})$
A°	=	{[]}	

Homework Question

• Say $A = \{[a], [b], [c], [d]\}.$

How many strings are in A^4 ?

CFL 02, King's College London - p. 6/43

Homework Question

• Say $A = \{[a], [b], [c], [d]\}.$

How many strings are in A^4 ?

What if $A = \{[a], [b], [c], []\};$ how many strings are then in A^4 ?

CFL 02, King's College London - p. 6/43

The Star Operation

• The **Kleene Star** of a language:

$$A\star \stackrel{\mathrm{\tiny def}}{=} igcup_{\mathrm{o} \leq n} A^n$$

This expands to

$A^{\circ} \cup A^{\mathrm{I}} \cup A^{2} \cup A^{3} \cup A^{4} \cup \dots$

or

CFL 02, King's College London - p. 7/43

The Meaning of a Regular Expression

 $L(\mathbf{o}) \stackrel{\text{def}}{=} \{\}$ $L(\mathbf{I}) \stackrel{\text{def}}{=} \{[]\}$ $L(c) \stackrel{\text{def}}{=} \{[c]\}$ $L(r_{I} + r_{2}) \stackrel{\text{def}}{=} L(r_{I}) \cup L(r_{2})$ $L(r_{I} \cdot r_{2}) \stackrel{\text{def}}{=} \{s_{I} @ s_{2} \mid s_{I} \in L(r_{I}) \land s_{2} \in L(r_{2})\}$ $L(r^{*}) \stackrel{\text{def}}{=} (L(r)) \star \stackrel{\text{def}}{=} \bigcup_{o < n} L(r)^{n}$

L is a function from regular expressions to sets of strings (languages): $L : \text{Rexp} \Rightarrow \text{Set}[\text{String}]$

Semantic Derivative

• The **Semantic Derivative** of a <u>language</u> w.r.t. to a character *c*:

$$Der\, c\,A \stackrel{\text{\tiny def}}{=} \{s \mid c :: s \in A\}$$

For $A = \{foo, bar, frak\}$ then $Der f A = \{oo, rak\}$ $Der b A = \{ar\}$ $Der a A = \{\}$

Semantic Derivative

• The **Semantic Derivative** of a language w.r.t. to a character *c*:

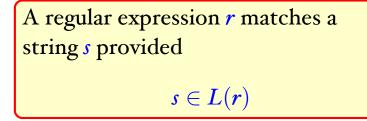
$$Der\, c\,A \stackrel{\text{\tiny def}}{=} \{s \mid c :: s \in A\}$$

For $A = \{foo, bar, frak\}$ then $Der f A = \{oo, rak\}$ $Der b A = \{ar\}$ $Der a A = \{\}$

We can extend this definition to strings

$$Ders \, sA = \{s' \mid s @ s' \in A\}$$

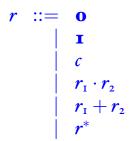
The Specification for Matching



...and the point of the this lecture is to decide this problem as fast as possible (unlike Python, Ruby, Java etc)

Regular Expressions

Their inductive definition:



nothing empty string / "" / [] single character sequence alternative / choice star (zero or more)

```
Th
abstract class Rexp
case object ZERO extends Rexp
case object ONE extends Rexp
case class CHAR(c: Char) extends Rexp
case class ALT(r1: Rexp, r2: Rexp) extends Rexp
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
case class STAR(r: Rexp) extends Rexp
```

r ::=	0	nothing
	I	empty string / "" / []
	С	single character
	$r_{\mathrm{I}}\cdot r_{\mathrm{2}}$	sequence
	$r_{\scriptscriptstyle \rm I}+r_{\scriptscriptstyle 2}$	alternative / choice
	<i>r</i> *	star (zero or more)

When Are Two Regular Expressions Equivalent?

$r_{\mathrm{I}} \equiv r_{\mathrm{2}} \stackrel{\mathrm{def}}{=} L(r_{\mathrm{I}}) = L(r_{\mathrm{2}})$

CFL 02, King's College London - p. 12/43

Concrete Equivalences

$$(a+b)+c \equiv a+(b+c)$$

$$a+a \equiv a$$

$$a+b \equiv b+a$$

$$(a \cdot b) \cdot c \equiv a \cdot (b \cdot c)$$

$$c \cdot (a+b) \equiv (c \cdot a) + (c \cdot b)$$

Concrete Equivalences

$$(a+b)+c \equiv a+(b+c)$$

$$a+a \equiv a$$

$$a+b \equiv b+a$$

$$(a \cdot b) \cdot c \equiv a \cdot (b \cdot c)$$

$$c \cdot (a+b) \equiv (c \cdot a) + (c \cdot b)$$

 $a \cdot a \not\equiv a$ $a + (b \cdot c) \not\equiv (a + b) \cdot (a + c)$

CFL 02, King's College London - p. 13/43

Corner Cases

 $\begin{array}{rrrrr} a \cdot \mathbf{0} & \not\equiv & a \\ a + \mathbf{1} & \not\equiv & a \\ \mathbf{1} & \equiv & \mathbf{0}^* \\ \mathbf{1}^* & \equiv & \mathbf{1} \\ \mathbf{0}^* & \not\equiv & \mathbf{0} \end{array}$

Simplification Rules

- $\begin{array}{rrr} r + \mathbf{0} &\equiv r \\ \mathbf{0} + r &\equiv r \\ r \cdot \mathbf{I} &\equiv r \end{array}$
 - $\mathbf{I} \cdot \mathbf{r} \equiv \mathbf{r}$
 - $r \cdot \mathbf{0} \equiv \mathbf{0}$
 - $\mathbf{0} \cdot \mathbf{r} \equiv \mathbf{0}$
- $r+r \equiv r$

A Matching Algorithm (1)

...whether a regular expression can match the empty string:

 $\begin{array}{ll} nullable(\mathbf{0}) & \stackrel{\text{def}}{=} false\\ nullable(\mathbf{1}) & \stackrel{\text{def}}{=} true\\ nullable(c) & \stackrel{\text{def}}{=} false\\ nullable(r_{I}+r_{2}) & \stackrel{\text{def}}{=} nullable(r_{I}) \lor nullable(r_{2})\\ nullable(r_{I} \cdot r_{2}) & \stackrel{\text{def}}{=} nullable(r_{I}) \land nullable(r_{2})\\ nullable(r^{*}) & \stackrel{\text{def}}{=} true \end{array}$

The Derivative of a Rexp

If *r* matches the string *c*::*s*, what is a regular expression that matches just *s*?

der cr gives the answer, Brzozowski 1964

CFL 02, King's College London - p. 17/43

The Derivative of a Rexp

 $\stackrel{\text{def}}{=}$ 0 der $c(\mathbf{0})$ $\stackrel{\text{def}}{=}$ 0 der $c(\mathbf{I})$ $\stackrel{\text{def}}{=}$ if c = d then **I** else **O** derc(d) $der c (r_{I} + r_{2}) \stackrel{\text{def}}{=} der c r_{I} + der c r_{2}$ der $c(r_1 \cdot r_2) \stackrel{\text{def}}{=} \text{if } nullable(r_1)$ then $(der c r_1) \cdot r_2 + der c r_2$ else $(der c r_1) \cdot r_2$ $\stackrel{\text{def}}{=} (\operatorname{der} c r) \cdot (r^*)$ der $c(r^*)$

The Derivative of a Rexp

 $\stackrel{\text{def}}{=}$ 0 der $c(\mathbf{0})$ $\stackrel{\text{def}}{=}$ 0 der $c(\mathbf{I})$ $\stackrel{\text{def}}{=}$ if c = d then **I** else **O** derc(d) $der c (r_{I} + r_{2}) \stackrel{\text{def}}{=} der c r_{I} + der c r_{2}$ der $c(r_1 \cdot r_2) \stackrel{\text{def}}{=} \text{if } nullable(r_1)$ then $(der c r_1) \cdot r_2 + der c r_2$ else $(der c r_1) \cdot r_2$ $\stackrel{\text{def}}{=} (der c r) \cdot (r^*)$ der $c(r^*)$ $\stackrel{\text{def}}{=} r$ ders [] r ders $(c::s)r \stackrel{\text{def}}{=} ders s (der c r)$

Given $r \stackrel{\text{def}}{=} ((a \cdot b) + b)^*$ what is

der a r = ?der b r = ?der c r = ?

The Brzozowski Algorithm

matches $r s \stackrel{\text{def}}{=} nullable(ders s r)$

CFL 02, King's College London - p. 20/43

Brzozowski: An Example

Does r_{I} match *abc*?

- Step 1: build derivative of a and r_1
- Step 2: build derivative of b and r_2
- Step 3: build derivative of c and r_3
- Step 4: the string is exhausted: $(nullable(r_4))$ test whether r_4 can recognise the empty string
- Output: result of the test \Rightarrow *true* or *false*

 $(r_2 = der a r_1)$

 $(r_3 = der b r_2)$

 $(r_{4} = der c r_{3})$

The Idea of the Algorithm

If we want to recognise the string *abc* with regular expression r_{I} then

• Der a $(L(r_1))$

The Idea of the Algorithm

If we want to recognise the string *abc* with regular expression r_{I} then

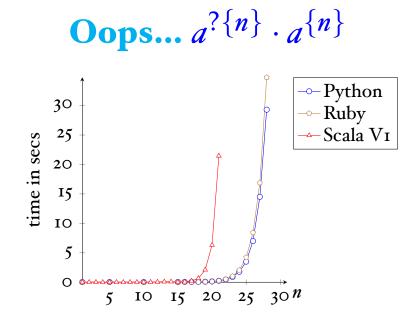
Der a (L(r_i))
 Der b (Der a (L(r_i)))

The Idea of the Algorithm

If we want to recognise the string *abc* with regular expression r_{I} then

- Der $a(L(r_1))$
- Der c (Der b (Der a $(L(r_{I})))$)
- finally we test whether the empty string is in this set; same for *Ders abc* $(L(r_1))$.

The matching algorithm works similarly, just over regular expressions instead of sets.



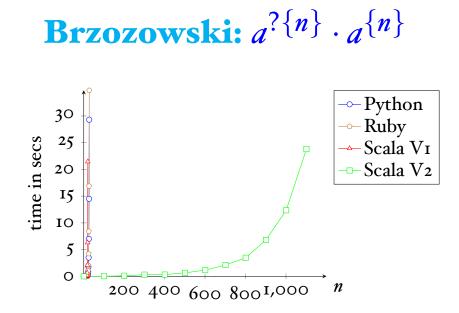
We represented the "n-times" $a^{\{n\}}$ as a sequence regular expression:

This problem is aggravated with $a^{?}$ being represented as $a + \mathbf{I}$.

Solving the Problem

What happens if we extend our regular expressions with explicit constructors

What is their meaning? What are the cases for *nullable* and *der*?



CFL 02, King's College London - p. 26/43

Recall the example of $r \stackrel{\text{def}}{=} ((a \cdot b) + b)^*$ with

$$der a r = ((\mathbf{I} \cdot b) + \mathbf{0}) \cdot r$$
$$der b r = ((\mathbf{0} \cdot b) + \mathbf{I}) \cdot r$$
$$der c r = ((\mathbf{0} \cdot b) + \mathbf{0}) \cdot r$$

What are these regular expressions equivalent to?

Simplification Rules

```
r + \mathbf{0} \Rightarrow r

\mathbf{0} + r \Rightarrow r

r \cdot \mathbf{I} \Rightarrow r

\mathbf{I} \cdot r \Rightarrow r

r \cdot \mathbf{0} \Rightarrow \mathbf{0}

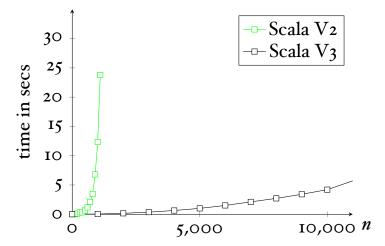
\mathbf{0} \cdot r \Rightarrow \mathbf{0}

r + r \Rightarrow r
```

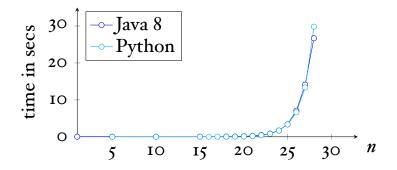
```
def ders(s: List[Char], r: Rexp) : Rexp = s match {
   case Nil => r
   case c::s => ders(s, simp(der(c, r)))
}
```

```
def simp(r: Rexp) : Rexp = r match {
  case ALT(r1, r2) => {
    (simp(r1), simp(r2)) match {
      case (ZERO, r2s) => r2s
      case (r1s, ZERO) => r1s
      case (r1s, r2s) =>
        if (r1s == r2s) r1s else ALT(r1s, r2s)
  case SEQ(r1, r2) => {
    (simp(r1), simp(r2)) match {
      case (ZERO, ) => ZERO
      case ( , ZERO) => ZERO
      case (ONE, r2s) => r2s
      case (r1s, ONE) => r1s
      case (r1s, r2s) \Rightarrow SEQ(r1s, r2s)
  }
  case r \Rightarrow r
```

Brzozowski: $a^{\{n\}} \cdot a^{\{n\}}$

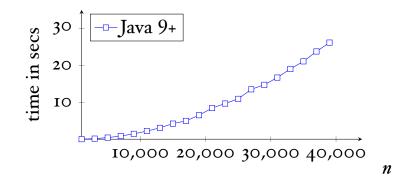


Another Example in Java 8 and Python



Regex: $(a^*)^* \cdot b$ Strings of the form $a \dots a$

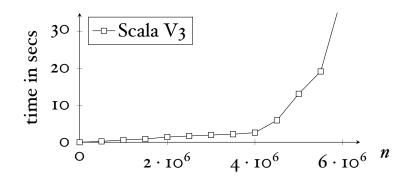
Same Example in Java 9+



Regex:
$$(a^*)^* \cdot b$$

Strings of the form $\underbrace{a \dots a}_n$

and with Brzozowski



Regex:
$$(a^*)^* \cdot b$$

Strings of the form $\underbrace{a \dots a}_n$

What is good about this Alg.

- extends to most regular expressions, for example $\sim r$
- is easy to implement in a functional language
- the algorithm is already quite old; there is still work to be done to use it as a tokenizer (that is relatively new work)
- we can prove its correctness...

Proofs about Rexps

Remember their inductive definition:

1

$$r ::= \mathbf{0}$$

$$| \mathbf{I}$$

$$| c$$

$$| r_1 \cdot r_2$$

$$| r_1 + r_2$$

$$| r^*$$

If we want to prove something, say a property P(r), for all regular expressions r then ...

Proofs about Rexp (2)

- *P* holds for **0**, **1** and **c**
- *P* holds for $r_1 + r_2$ under the assumption that *P* already holds for r_1 and r_2 .
- *P* holds for $r_1 \cdot r_2$ under the assumption that *P* already holds for r_1 and r_2 .
- *P* holds for *r*^{*} under the assumption that *P* already holds for *r*.

Assume P(r) is the property:

nullable(r) if and only if [] $\in L(r)$

CFL 02, King's College London - p. 37/43

Proofs about Rexp (4)

$$rev(\mathbf{0}) \stackrel{\text{def}}{=} \mathbf{0}$$

$$rev(\mathbf{I}) \stackrel{\text{def}}{=} \mathbf{I}$$

$$rev(c) \stackrel{\text{def}}{=} c$$

$$rev(r_{I} + r_{2}) \stackrel{\text{def}}{=} rev(r_{I}) + rev(r_{2})$$

$$rev(r_{I} \cdot r_{2}) \stackrel{\text{def}}{=} rev(r_{2}) \cdot rev(r_{I})$$

$$rev(r^{*}) \stackrel{\text{def}}{=} rev(r)^{*}$$

We can prove

$$L(\mathit{rev}(\mathit{r})) = \{\mathit{s}^{\scriptscriptstyle -\imath} \mid \mathit{s} \in L(\mathit{r})\}$$

by induction on *r*.

Correctness Proof for our Matcher

• We started from

 $s \in L(r)$ $\Leftrightarrow \quad [] \in Derss(L(r))$

CFL 02, King's College London - p. 39/43

Correctness Proof for our Matcher

• We started from

 $\Leftrightarrow \quad [] \in Derss(L(r))$ • if we can show Derss(L(r)) = L(derssr) we have $\Leftrightarrow \quad [] \in L(derssr)$ $\Leftrightarrow \quad nullable(derssr)$ $\overset{def}{=} \quad t$

 $s \in L(r)$

Let *Der c A* be the set defined as

$$Der \, c \, A \stackrel{\text{def}}{=} \{ s \mid c :: s \in A \}$$

We can prove

 $L(\operatorname{der} \operatorname{c} r) = \operatorname{Der} \operatorname{c} (L(r))$

by induction on *r*.

CFL 02, King's College London - p. 40/43

Proofs about Strings

If we want to prove something, say a property P(s), for all strings *s* then ...

- *P* holds for the empty string, and
- *P* holds for the string *c*::*s* under the assumption that *P* already holds for *s*

Proofs about Strings (2)

We can then prove

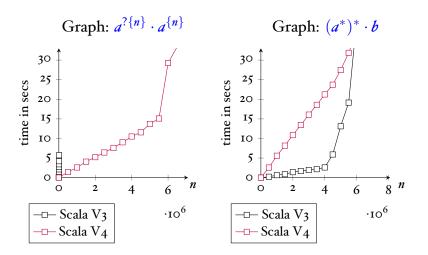
Derss(L(r)) = L(derssr)

We can finally prove

matchess r if and only if $s \in L(r)$

CFL 02, King's College London - p. 42/43

Epilogue



CFL 02, King's College London - p. 43/43

Epilogue

Graph: $a^{\{n\}}$	$\cdot a^{\{n\}}$ Graph: $(a^*)^* \cdot b$
$\begin{array}{c} 30 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
<pre>case (Nil, r) => r case (s, ZERO) => Z case (s, ONE) => if</pre>	ar], r: Rexp) : Rexp = (s, r) match { ZERO F (s == Nil) ONE else ZERO => if (s == List(c)) ONE else
	<pre>if (s == Nil) CHAR(c) else ZERO 2)) => ALT(ders2(s, r2), ders2(s, r2)) ders2(s, simp(der(c, r)))</pre>