
Automata and
Formal Languages (1)

Antikythera automaton, 100 BC (Archimedes?)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS

AFL 01, King’s College London, 26. September 2012 – p. 1/19



AFL 01, King’s College London, 26. September 2012 – p. 2/19

Server

GET request

webpage

POST data Browser



AFL 01, King’s College London, 26. September 2012 – p. 2/19

Server

GET request

webpage

POST data Browser

programming languages, compilers



transforming strings into structured data

Lexing
(recognising “words”)

Parsing
(recognising “sentences”)

AFL 01, King’s College London, 26. September 2012 – p. 3/19



The subject is quite old:

Turing Machines, 1936
first compiler for COBOL, 1957 (Grace Hopper)
but surprisingly research papers are still
published now

Grace Hopper

(she made it to David Letterman’s Tonight Show,

http://www.youtube.com/watch?v=aZOxtURhfEU)

AFL 01, King’s College London, 26. September 2012 – p. 4/19

http://www.youtube.com/watch?v=aZOxtURhfEU


This Course

the ultimate goal is to implement a small
web-browser (really small one)

Let’s start with:

a web-crawler
an email harvester
a web-scraper

AFL 01, King’s College London, 26. September 2012 – p. 5/19



A Web Crawler

1 given an URL, read the corresponding webpage
2 extract all links from it
3 call the web-crawler again for all these links

AFL 01, King’s College London, 26. September 2012 – p. 6/19



A Web Crawler

1 given an URL, read the corresponding webpage
2 if not possible print, out a problem
3 if possible, extract all links from it
4 call the web-crawler again for all these links

(we need a bound for the number of recursive calls)
(the purpose is to check all links on my own webpage)

AFL 01, King’s College London, 26. September 2012 – p. 7/19



A Web Crawler

1 given an URL, read the corresponding webpage
2 if not possible print, out a problem
3 if possible, extract all links from it
4 call the web-crawler again for all these links

(we need a bound for the number of recursive calls)
(the purpose is to check all links on my own webpage)

AFL 01, King’s College London, 26. September 2012 – p. 7/19



Scala
a simple Scala function for reading webpages

1 import io.Source
2

3 def get_page(url: String) : String = {
4 Source.fromURL(url).take(10000).mkString

get_page("""http://www.inf.kcl.ac.uk/staff/urbanc/""")

slightly more complicated for handling errors properly:

1 def get_page(url: String) : String = {
2 try {
3 Source.fromURL(url).take(10000).mkString
4 }
5 catch {
6 case e => {
7 println(" Problem with: " + url)
8 ""
9 }

10 }
11 }

AFL 01, King’s College London, 26. September 2012 – p. 8/19



Scala
a simple Scala function for reading webpages

1 import io.Source
2

3 def get_page(url: String) : String = {
4 Source.fromURL(url).take(10000).mkString

get_page("""http://www.inf.kcl.ac.uk/staff/urbanc/""")

slightly more complicated for handling errors properly:

1 def get_page(url: String) : String = {
2 try {
3 Source.fromURL(url).take(10000).mkString
4 }
5 catch {
6 case e => {
7 println(" Problem with: " + url)
8 ""
9 }

10 }
11 }

AFL 01, King’s College London, 26. September 2012 – p. 8/19



Scala
a simple Scala function for reading webpages

1 import io.Source
2

3 def get_page(url: String) : String = {
4 Source.fromURL(url).take(10000).mkString

get_page("""http://www.inf.kcl.ac.uk/staff/urbanc/""")

slightly more complicated for handling errors properly:

1 def get_page(url: String) : String = {
2 try {
3 Source.fromURL(url).take(10000).mkString
4 }
5 catch {
6 case e => {
7 println(" Problem with: " + url)
8 ""
9 }

10 }
11 }

AFL 01, King’s College London, 26. September 2012 – p. 8/19



A Regular Expression
. . . is a pattern or template for specifying strings

"https?://[ˆ"]*"

matches for example
"http://www.foobar.com"

"https://www.tls.org"

AFL 01, King’s College London, 26. September 2012 – p. 9/19



A Regular Expression
. . . is a pattern or template for specifying strings

"""\"https?://[ˆ\"]*\"""".r

matches for example
"http://www.foobar.com"

"https://www.tls.org"

AFL 01, King’s College London, 26. September 2012 – p. 9/19



rexp.findAllIn(string)
returns a list of all (sub)strings that match the
regular expression

rexp.findFirstIn(string)
returns either None if no (sub)string matches or
Some(s) with the first (sub)string

AFL 01, King’s College London, 26. September 2012 – p. 10/19



1 val http_pattern = """\"https?://[^\"]*\"""".r
2

3 def unquote(s: String) = s.drop(1).dropRight(1)
4

5 def get_all_URLs(page: String) : Set[String] = {
6 (http_pattern.findAllIn(page)).map { unquote(_) }.toSet
7 }
8

9 def crawl(url: String, n: Int) : Unit = {
10 if (n == 0) ()
11 else {
12 println("Visiting: " + n + " " + url)
13 for (u <- get_all_URLs(get_page(url))) crawl(u, n - 1)
14 }
15 }

crawl(some_start_URL, 2)

AFL 01, King’s College London, 26. September 2012 – p. 11/19



a version that only “crawls” links in my domain:

1 val my_urls = """urbanc""".r
2

3 def crawl(url: String, n: Int) : Unit = {
4 if (n == 0) ()
5 else if (my_urls.findFirstIn(url) == None) ()
6 else {
7 println("Visiting: " + n + " " + url)
8 for (u <- get_all_URLs(get_page(url))) crawl(u, n - 1)
9 }

10 }

AFL 01, King’s College London, 26. September 2012 – p. 12/19



a little email “harvester”:

1 abstract class Rexp
2

3 case object NULL extends Rexp
4 case object EMPTY extends Rexp
5 case class CHAR(c: Char) extends Rexp
6 case class ALT(r1: Rexp, r2: Rexp) extends Rexp
7 case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
8 case class STAR(r: Rexp) extends Rexp

http://net.tutsplus.com/tutorials/other/8-regular-expressions-you-should-know/

AFL 01, King’s College London, 26. September 2012 – p. 13/19

http://net.tutsplus.com/tutorials/other/8-regular-expressions-you-should-know/


Regular Expressions

AFL 01, King’s College London, 26. September 2012 – p. 14/19

r ::= ∅ null
| ε empty string / ""
| c character
| r1 · r2 sequence
| r1 + r2 alternative / choice
| r∗ star (zero or more)



Regular Expressions

1 abstract class Rexp
2

3 case object NULL extends Rexp
4 case object EMPTY extends Rexp
5 case class CHAR(c: Char) extends Rexp
6 case class ALT(r1: Rexp, r2: Rexp) extends Rexp
7 case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
8 case class STAR(r: Rexp) extends Rexp

AFL 01, King’s College London, 26. September 2012 – p. 15/19



The Meaning of a
Regular Expression

AFL 01, King’s College London, 26. September 2012 – p. 16/19

L(∅) def
= ∅

L(ε) def
= {""}

L(c) def
= {"c"}

L(r1 + r2)
def
= L(r1) ∪ L(r2)

L(r1 · r2)
def
= { s1 @ s2 | s1 ∈ L(r1) ∧ s2 ∈ L(r2) }

L(r∗) def
=

⋃
n≥0 L(r)n

L(r)0 def
= {""}

L(r)n+1 def
= L(r) @ L(r)n (append on sets)

{ s1 @ s2 | s1 ∈ L(r1) ∧ s2 ∈ L(r2) }



The Meaning of a
Regular Expression

AFL 01, King’s College London, 26. September 2012 – p. 16/19

L(∅) def
= ∅

L(ε) def
= {""}

L(c) def
= {"c"}

L(r1 + r2)
def
= L(r1) ∪ L(r2)

L(r1 · r2)
def
= { s1 @ s2 | s1 ∈ L(r1) ∧ s2 ∈ L(r2) }

L(r∗) def
=

⋃
n≥0 L(r)n

L(r)0 def
= {""}

L(r)n+1 def
= L(r) @ L(r)n (append on sets)

{ s1 @ s2 | s1 ∈ L(r1) ∧ s2 ∈ L(r2) }



The Meaning of a
Regular Expression

AFL 01, King’s College London, 26. September 2012 – p. 16/19

L(∅) def
= ∅

L(ε) def
= {""}

L(c) def
= {"c"}

L(r1 + r2)
def
= L(r1) ∪ L(r2)

L(r1 · r2)
def
= { s1 @ s2 | s1 ∈ L(r1) ∧ s2 ∈ L(r2) }

L(r∗) def
=

⋃
n≥0 L(r)n

L(r)0 def
= {""}

L(r)n+1 def
= L(r) @ L(r)n (append on sets)

{ s1 @ s2 | s1 ∈ L(r1) ∧ s2 ∈ L(r2) }



This Course

We will have a look at

regular expression / regular expression matching
a bit of sets (of strings)
automata
the Myhill-Nerode theorem
parsing
grammars
a small interpreter / webbrowser

AFL 01, King’s College London, 26. September 2012 – p. 17/19



Exam

The question “Is this relevant for the exams?” is
not appreciated!

Whatever is in the homework sheets (and is not
marked optional) is relevant for the exam.
No code needs to be written.

AFL 01, King’s College London, 26. September 2012 – p. 18/19



Maps in Scala
map takes a function, say f, and applies it to
every element of the list:

AFL 01, King’s College London, 26. September 2012 – p. 19/19

List(1, 2, 3, 4, 5, 6, 7, 8, 9)

List(1, 4, 9, 16, 25, 36, 49, 64, 81)


