Compilers and
Formal Languages (7)

Email: christian.urban at kcl.ac.uk
Office: N7.07 (North Wing, Bush House)
Slides: KEATS (also home work is there)

CFGs

A context-free grammar (CFG) G consists of:

e a finite set of nonterminal symbols (upper case)
e a finite terminal symbols or tokens (lower case)
e astart symbol (which must be a nonterminal)
e a set of rules

A — ths,|rhs,]| ...

where rhs are sequences involving terminals and
nonterminals (can also be empty).

CFGs

A context-free grammar (CFG) G consists of:

e a finite set of nonterminal symbols (upper case)
e a finite terminal symbols or tokens (lower case)
e astart symbol (which must be a nonterminal)
e a set of rules

A — ths,|rhs,]| ...

where rhs are sequences involving terminals and
nonterminals (can also be empty).

Hierarchy of Languages

Recall that languages are sets of strings.

(all languages

decidable languages

context sensitive languages

context-free languages
[regular languages]

Arithmetic Expressions

A grammar for arithmetic expressions and
numbers:

E — E-+-E|E-«-E|(E)|N
N — N-Njo|1]...]9

Unfortunately it is left-recursive (and ambiguous).

A problem for recursive descent parsers
(e.g. parser combinators).

Arithmetic Expressions

A grammar for arithmetic expressions and
numbers:

E — E-+-E|E-«-E|(E)|N
N — N-Njo|1]...]9

Unfortunately it is left-recursive (and ambiguous).

A problem for recursive descent parsers
(e.g. parser combinators).

Numbers

N — N-Nlo|1]...]9

A non-left-recursive, non-ambiguous grammar for
numbers:

N — o-N|t-N|...]of|1] ... |9

Operator Precedences
To disambiguate

E — E-+-E|E-«-E|(E)|N

Decide on how many precedence levels, say

highest for (), medium for *, lowest for +

Elow — Emed - Elow ‘ Emed
Emed — Ebz' EON Emed | Ebz'
Ebz' — ('Elow') ‘ N

Operator Precedences
To disambiguate
E —» E-+-E|E-«-E|(E)|N

Decide on how many precedence levels, say

highest for (), medium for *, lowest for +

Elow — Emed - Elow ‘ Emed
Emed — Ebz' EON Emed | Ebz'
Ebz' — ('Elow') ‘ N

What happens with 1 4 3 4 47

Removing Left-Recursion

The rule for numbers is directly left-recursive:
N — N-Njo|t (...)

Translate

Removing Left-Recursion

The rule for numbers is directly left-recursive:

N — N-Nlo|r (..)

Translate
N — N-a N — BN
B = N — a-N
| €
Which means

Chomsky Normal Form

All rules must be of the form
A —a
or
A—B-C

No rule can contain €.

e-Removal

Q@ IfA — a-B-pBand B — € are in the grammar,
then add A — « - f3 (iterate if necessary).

@ Throwout all B — €.

N —o-N|1-N

1 N
N'=N-N'|e N 5o-N|1-N|o|r

N -N-N|N|e

N —-o-N|1-N|o]r1
N = N-N|N

e-Removal

Q@ IfA — a-B-pBand B — € are in the grammar,
then add A — « - f3 (iterate if necessary).

@ Throwout all B — €.

N »o-N|1-N

1 N
N'=N-N'|e N 5o-N|1-N|o|r

N -N-N|N|e

N —-o-N|1-N|o]r1
N = N-N|N

N—o-N|1-Nl|o|1

CYK Algorithm

If grammar is in Chomsky normalform ...

S — N-P
P — V-N
N — N-N

N — students | Jeff | geometry | trains
V. — trains

Jeff trains geometry students

CYK Algorithm

o fastest possible algorithm for recognition
problem

e runtime is O(73)

e grammars need to be transferred into CNF

Hierarchy of Languages

Recall that languages are sets of strings.

(all languages

decidable languages

context sensitive languages

context-free languages
[regular languages]

Context Sensitive Grms

Context Sensitive Grms

Stmt skip

Id := AExp

if BExp then Block else Block
while BExp do Block

read Id

write Id

write String

Stmt ;5 Stmts
Stmt

{ Stmts }
Stmt

Stmts
Block

AExp
BExp

=1 =1 —————

write “Fib”;

read n;
minusl := 0;
minus2 := 1;
while n > 0 do {
temp := minus2;
minus2 := minusl + minus2;
minusl := temp;
n :=n -1
}s

write “Result”;
write minus2

An Interpreter

{

e

* 45

X =5
yi=xk3;
y X
X:=ux*j3

}

o the interpreter has to record the value of x before
assigning a value to y

An Interpreter

{

e

* 45

x:=5
y = X% 3;
y X

X:=ux*j3

}

o the interpreter has to record the value of x before
assigning a value to y
e eval(stmt, env)

Interpreter

eval(a, < a,,E)

def

= n

def

def

def

E(x) lookup xinE

eval(a,, E) + eval(a,,E)

eval(a,, E) — eval(a,, E)
(@, E

eval(a,, E) * eval(a,,E)

eval(a,, E) = eval(a,, E)
—(eval(a,, E) = eval(a,,E))
eval(a,, E) < eval(a,, E)

Interpreter (2)

eval(skip, E) “ E
eval(x ;= 4,E) £ E(x+ eval(a,E))
eval(if 4 then cs, else cs,, E) &

if eval(4, E) then eval(cs,, E)

else eval(cs,, E)
def

eval(while 4 do ¢s, E) =
if eval(4,E)
then eval(while 4 do cs, eval(cs, E))
else E

eval(write x,) £ { println(E(x)); E }

Test Program
start := 1000;

X := start;
y := start;
z := start;

while 0 < x do {
while 0 < y do {
while @ < z do { z := z - 1 };
z := start;

y :=y -1
}s
y := start;
X :=x -1

SECS

Interpreted Code

300 |
200 |

I0OO |

200 400 oo 8oo 1,000 1,200 I,400

n

Java Virtual Machine

introduced in 1995
is a stack-based VM (like Postscript, CLR of .Net)
contains a JI'T compiler

many languages take advantage of JVM’s
infrastructure (JRE)

is garbage collected = no bufter overflows

some languages compile to the JVM: Scala,
Clojure...

