
Handout 5 (Grammars & Parser)
While regular expressions are very useful for lexing and for recognising many
paĴerns in strings (like email addresses), they have their limitations. For ex-
ample there is no regular expression that can recognise the language anbn. An-
other example for which there exists no regular expression is the language of
well-parenthesised expressions. In languages like Lisp, which use parentheses
rather extensively, itmight be of interestwhether the following two expressions
are well-parenthesised (the left one is, the right one is not):

(((()()))()) (((()()))()))

Not being able to solve such recognition problems is a serious limitation. In
order to solve such recognition problems, we need more powerful techniques
than regular expressions. We will in particular look at context-free languages.
They include the regular languages as the picture below shows:

all languages

decidable languages

context sensitive languages
context-free languages

regular languages

Context-free languages play an important role in ‘day-to-day’ text processing
and in programming languages. Context-free languages are usually specified
by grammars. For example a grammar for well-parenthesised expressions is

⟨P⟩ ::= (·⟨P⟩·) · ⟨P⟩ | ϵ

or a grammar for recognising strings consisting of ones is

⟨O⟩ ::= 1 · ⟨O⟩ | 1

In general grammars consist of finitely many rules built up from terminal
symbols (usually lower-case leĴers) and non-terminal symbols (upper-case leĴers
inside ⟨⟩). Rules have the shape

⟨NT⟩ ::= rhs

where on the left-hand side is a single non-terminal and on the right a string
consisting of both terminals and non-terminals including the ϵ-symbol for indi-
cating the empty string. We use the convention to separate components on the
right hand-side by using the · symbol, as in the grammar forwell-parenthesised
expressions. We also use the convention to use | as a shorthand notation for
several rules. For example

1

⟨NT⟩ ::= rhs1 | rhs2

means that the non-terminal ⟨NT⟩ can be replaced by either rhs1 or rhs2. If
there are more than one non-terminal on the left-hand side of the rules, then
we need to indicate what is the starting symbol of the grammar. For example
the grammar for arithmetic expressions can be given as follows

⟨E⟩ ::= ⟨N⟩ (1)
⟨E⟩ ::= ⟨E⟩ ·+ · ⟨E⟩ (2)
⟨E⟩ ::= ⟨E⟩ · − · ⟨E⟩ (3)
⟨E⟩ ::= ⟨E⟩ · ∗ · ⟨E⟩ (4)
⟨E⟩ ::= (·⟨E⟩·) (5)
⟨N⟩ ::= ⟨N⟩ · ⟨N⟩ | 0 | 1 | . . . | 9 (6…)

where ⟨E⟩ is the starting symbol. A derivation for a grammar starts with the
starting symbol of the grammar and in each step replaces one non-terminal
by a right-hand side of a rule. A derivation ends with a string in which only
terminal symbols are left. For example a derivation for the string (1 + 2) + 3 is
as follows:

⟨E⟩ → ⟨E⟩+ ⟨E⟩ by (2)
→ (⟨E⟩) + ⟨E⟩ by (5)
→ (⟨E⟩+ ⟨E⟩) + ⟨E⟩ by (2)
→ (⟨E⟩+ ⟨E⟩) + ⟨N⟩ by (1)
→ (⟨E⟩+ ⟨E⟩) + 3 by (6…)
→ (⟨N⟩+ ⟨E⟩) + 3 by (1)
→+ (1 + 2) + 3 by (1, 6…)

where on the right it is indicated which grammar rule has been applied. In the
last step we merged several steps into one.

The language of a context-free grammar G with start symbol S is defined as
the set of strings derivable by a derivation, that is

{c1 . . . cn | S →∗ c1 . . . cn with all ci being non-terminals}

A parse-tree encodes how a string is derivedwith the starting symbol on top and
each non-terminal containing a subtree for how it is replaced in a derivation.
The parse tree for the string (1 + 23) + 4 is as follows:

2

E

E

(E

E

N

1

+ E

N

2

N

3

)

+ E

N

4

We are often interested in these parse-trees since they encode the structure of
how a string is derived by a grammar. Before we come to the problem of con-
structing such parse-trees, we need to consider the following two properties of
grammars. A grammar is left-recursive if there is a derivation starting from a
non-terminal, say NT which leads to a string which again starts with NT. This
means a derivation of the form.

NT → . . . → NT · . . .

It can be easily seen that the grammar above for arithmetic expressions is left-
recursive: for example the rules E → E ·+ · E and N → N · N show that this
grammar is left-recursive. But note that left-recursiveness can involve more
than one step in the derivation. The problem with left-recursive grammars
is that some algorithms cannot cope with them: they fall into a loop. Fortu-
nately every left-recursive grammar can be transformed into one that is not left-
recursive, although this transformationmight make the grammar less “human-
readable”. For example if we want to give a non-left-recursive grammar for
numbers we might specify

N → 0 | . . . | 9 | 1 · N | 2 · N | . . . | 9 · N

Using this grammar we can still derive every number string, but we will never
be able to derive a string of the form N → . . . → N ·

The other property we have to watch out for is when a grammar is ambigu-
ous. A grammar is said to be ambiguous if there are two parse-trees for one
string. Again the grammar for arithmetic expressions shown above is ambigu-
ous. While the shown parse tree for the string (1 + 23) + 4 is unique, this is
not the case in general. For example there are two parse trees for the string
1 + 2 + 3, namely

3

E

E

N

1

+ E

E

N

2

+ E

N

3

E

E

E

N

1

+ E

N

2

+ E

N

3

In particular in programming languages we will try to avoid ambiguous gram-
mars because two different parse-trees for a string mean a program can be in-
terpreted in two different ways. In such cases we have to somehow make sure
the two different ways do not maĴer, or disambiguate the grammar in some
other way (for example making the + left-associative). Unfortunately already
the problem of deciding whether a grammar is ambiguous or not is in general
undecidable. But in simple instance (the ones we deal in this module) one can
usually see when a grammar is ambiguous.

Parser Combinators
Let us now turn to the problem of generating a parse-tree for a grammar and
string. In what follows we explain parser combinators, because they are easy to
implement and closely resemble grammar rules. Imagine that a grammar de-
scribes the strings of natural numbers, such as the grammar N shown above.
For all such strings we want to generate the parse-trees or later on we actually
want to extract the meaning of these strings, that is the concrete integers “be-
hind” these strings. In Scala the parser combinators will be functions of type

I ⇒ Set[(T, I)]

that is they take as input something of type I, typically a list of tokens or a string,
and return a set of pairs. The first component of these pairs corresponds towhat
the parser combinator was able to process from the input and the second is the
unprocessed part of the input. As we shall see shortly, a parser combinator
might return more than one such pair, with the idea that there are potentially
several ways how to interpret the input. As a concrete example, consider the
case where the input is of type string, say the string

i f f o o t e s t b a r

Wemight have a parser combinator which tries to interpret this string as a key-
word (if) or an identifier (iffoo). Then the output will be the set{(

i f , f o o t e s t b a r
)

,
(
i f f o o , t e s t b a r

)}

4

where the first pair means the parser could recognise if from the input and
leaves the rest as ‘unprocessed’ as the second component of the pair; in the
other case it could recognise iffoo and leaves testbar as unprocessed. If the
parser cannot recognise anything from the input then parser combinators just
return the empty set {}. This will indicate something “went wrong”.

The main aĴraction is that we can easily build parser combinators out of
smaller components following very closely the structure of a grammar. In order
to implement this in an object oriented programming language, like Scala, we
need to specify an abstract class for parser combinators. This abstract class
requires the implementation of the function parse taking an argument of type
I and returns a set of type Set[(T, I)].

abstract class Parser[I, T] {
def parse(ts: I): Set[(T, I)]

def parse_all(ts: I): Set[T] =
for ((head, tail) <- parse(ts); if (tail.isEmpty))

yield head
}

From the function parsewe can then “centrally” derive the function parse_all,
which just filters out all pairs whose second component is not empty (that is
has still some unprocessed part). The reason is that at the end of parsing we
are only interested in the results where all the input has been consumed and no
unprocessed part is left.

One of the simplest parser combinators recognises just a character, say c,
from the beginning of strings. Its behaviour is as follows:

• if the head of the input string startswith a c, it returns the set {(c, tail of s)}

• otherwise it returns the empty set ∅

The input type of this simple parser combinator for characters is String and
the output type Set[(Char, String)]. The code in Scala is as follows:

case class CharParser(c: Char) extends Parser[String, Char] {
def parse(sb: String) =

if (sb.head == c) Set((c, sb.tail)) else Set()
}

The parse function tests whether the first character of the input string sb is
equal to c. If yes, then it splits the string into the recognised part c and the
unprocessed part sb.tail. In case sb does not start with c then the parser
returns the empty set (in Scala Set()).

More interesting are the parser combinators that build larger parsers out of
smaller component parsers. For example the alternative parser combinator is
as follows.

5

class AltParser[I, T]
(p: => Parser[I, T],
q: => Parser[I, T]) extends Parser[I, T] {

def parse(sb: I) = p.parse(sb) ++ q.parse(sb)
}

The types of this parser combinator are polymorphic (we just have I for the
input type, and T for the output type). The alternative parser builds a new
parser out of two existing parser combinator p and q. Both need to be able to
process input of type I and return the same output type Set[(T, I)]. (There
is an interesting detail of Scala, namely the => in front of the types of p and q.
They will prevent the evaluation of the arguments before they are used. This
is often called lazy evaluation of the arguments.) The alternative parser should
run the input with the first parser p (producing a set of outputs) and then run
the same input with q. The result should be then just the union of both sets,
which is the operation ++ in Scala.

This parser combinator already allows us to construct a parser that either a
character a or b, as

new AltParser(CharParser('a'), CharParser('b'))

Scala allows us to introduce some more readable shorthand notation for this,
like 'a' || 'b'. We can call this parser combinator with the strings

input string output

a c →
{
(a , c)

}
b c →

{
(b , c)

}
c c → ∅

We receive in the first two cases a successful output (that is a non-empty set).
A bit more interesting is the sequence parser combinator implemented in Scala

as follows:

class SeqParser[I, T, S]
(p: => Parser[I, T],
q: => Parser[I, S]) extends Parser[I, (T, S)] {

def parse(sb: I) =
for ((head1, tail1) <- p.parse(sb);

(head2, tail2) <- q.parse(tail1))
yield ((head1, head2), tail2)

}

This parser takes as input two parsers, p and q. It implements parse as follows:
let first run the parser p on the input producing a set of pairs (head1, tail1).
The tail1 stands for the unprocessed parts left over by p. Let q run on these

6

unprocessed parts producing again a set of pairs. The output of the sequence
parser combinator is then a set containing pairs where the first components are
again pairs, namely what the first parser could parse together with what the
second parser could parse; the second component is the unprocessed part left
over after running the second parser q. Therefore the input type of the sequence
parser combinator is as usual I, but the output type is

Set[((T, S), I)]

Scala allows us to provide some shorthand notation for the sequence parser
combinator. So we can write for example 'a' ∼ 'b', which is the parser com-
binator that first consumes the character a from a string and then b. Calling this
parser combinator with the strings

input string output

a b c →
{
((a , b), c)

}
b a c → ∅
c c c → ∅

A slightly more complicated parser is ('a' || 'b') ∼ 'b' which parses as
first character either an a or b followed by a b. This parser produces the follow-
ing results.

input string output

a b c →
{
((a , b), c)

}
b b c →

{
((b , b), c)

}
a a c → ∅

Note carefully that constructing the parser 'a' || ('a' ∼ 'b')will result
in a tying error. The first parser has as output type a single character (recall the
type of CharParser), but the second parser produces a pair of characters as
output. The alternative parser is however required to have both component
parsers to have the same type. We will see later how we can build this parser
without the typing error.

The next parser combinator does not actually combine smaller parsers, but
applies a function to the result of the parser. It is implemented in Scala as fol-
lows

class FunParser[I, T, S]
(p: => Parser[I, T],
f: T => S) extends Parser[I, S] {

def parse(sb: I) =
for ((head, tail) <- p.parse(sb)) yield (f(head), tail)

}

7

This parser combinator takes a parser p with output type T as input as well
as a function f with type T => S. The parser p produces sets of type (T, I).
The FunParser combinator then applies the function f to all the parer outputs.
Since this function is of type T => S, we obtain a parser with output type S.
Again Scala lets us introduce some shorthand notation for this parser combi-
nator. Therefore we will write p ==> f for it.

8

