
Handout 2 (Regular Expression Matching)
This lecture is about implementing a more efficient regular expression matcher
(the plots on the right)—more efficient than the matchers from regular expres-
sion libraries in Ruby and Python (the plots on the left). These plots show the
running time for the evil regular expression a?{n}a{n}. Note the different scales
of the x-axes.

5 10 15 20 25 30
0
5

10
15
20
25
30

as

tim
e
in
se
cs

Python
Ruby

0 3,000 6,000 9,000 12,000
0
5

10
15
20
25
30

as

tim
e
in
se
cs

Having specified in the previous lecture what problem our regular expression
matcher, whichwewill call matches, is supposed to solve, namely for any given
regular expression r and string s answer true if and only if

s ∈ L(r)
we can look at an algorithm to solve this problem. Clearly we cannot use the
function L directly for this, because in general the set of strings L returns is
infinite (recallwhat L(a∗) is). In such cases there is nowaywe can implement an
exhaustive test for whether a string is member of this set or not. In contrast our
matching algorithm will mainly operate on the regular expression r and string
s, which are both finite. Before we come to the matching algorithm, however,
let us have a closer look at what it means when two regular expressions are
equivalent.

Regular Expression Equivalences
We already defined in Handout 1 what it means for two regular expressions to
be equivalent, namely if their meaning is the same language:

r1 ≡ r2
def
= L(r1) = L(r2)

It is relatively easy to verify that some concrete equivalences hold, for example

(a + b) + c ≡ a + (b + c)
a + a ≡ a
a + b ≡ b + a

(a · b) · c ≡ a · (b · c)
c · (a + b) ≡ (c · a) + (c · b)

1

but also easy to verify that the following regular expressions are not equivalent

a · a ̸≡ a
a + (b · c) ̸≡ (a + b) · (a + c)

I leave it to you to verify these equivalences and non-equivalences. It is also
interesting to look at some corner cases involving ϵ and ∅:

a ·∅ ̸≡ a
a + ϵ ̸≡ a

ϵ ≡ ∅∗

ϵ∗ ≡ ϵ
∅∗ ̸≡ ∅

Again I leave it to you to make sure you agree with these equivalences and
non-equivalences.

For our matching algorithm however the following six equivalences will
play an important role:

r +∅ ≡ r
∅+ r ≡ r

r · ϵ ≡ r
ϵ · r ≡ r

r ·∅ ≡ ∅
∅ · r ≡ ∅
r + r ≡ r

which always hold no maĴer what the regular expression r looks like. The
first are easy to verify since L(∅) is the empty set. The next two are also easy
to verify since L(ϵ) = {[]} and appending the empty string to every string
of another set, leaves the set unchanged. Be careful to fully comprehend the
fifth and sixth equivalence: if you concatenate two sets of strings and one is
the empty set, then the concatenation will also be the empty set. Check the
definition of _ @ _. The last equivalence is again trivial.

What will be important later on is that we can orient these equivalences and
read them from left to right. In this waywe can view them as simplification rules.
Suppose for example the regular expression

(r1 +∅) · ϵ + ((ϵ + r2) + r3) · (r4 ·∅) (1)

If we can find an equivalent regular expression that is simpler (smaller for ex-
ample), then this might potentially make our matching algorithm is faster. The
reason is that whether a string s is in L(r) or in L(r′)with r ≡ r′ will always give
the same answer. In the example above youwill see that the regular expression
is equivalent to r1 if you iteratively apply the simplification rules from above:

2

(r1 +∅) · ϵ + ((ϵ + r2) + r3) · (r4 ·∅)

≡ (r1 +∅) · ϵ + ((ϵ + r2) + r3) ·∅
≡ (r1 +∅) · ϵ +∅
≡ (r1 +∅) +∅
≡ r1 +∅
≡ r1

In each step I underlined where a simplification rule is applied. Our match-
ing algorithm in the next section will often generate such “useless” ϵs and ∅s,
therefore simplifying them away will make the algorithm quite a bit faster.

The Matching Algorithm
The algorithm we will define below consists of two parts. One is the function
nullable which takes a regular expression as argument and decides whether it
can match the empty string (this means it returns a boolean in Scala). This can
be easily defined recursively as follows:

nullable(∅)
def
= false

nullable(ϵ) def
= true

nullable(c) def
= false

nullable(r1 + r2)
def
= nullable(r1) ∨ nullable(r2)

nullable(r1 · r2)
def
= nullable(r1) ∧ nullable(r2)

nullable(r∗) def
= true

The idea behind this function is that the following property holds:

nullable(r) if and only if [] ∈ L(r)

Note on the left-hand side we have a function we can implement; on the right
we have its specification (which we cannot implement in a programming lan-
guage).

The other function of ourmatching algorithm calculates a derivative of a reg-
ular expression. This is a function which will take a regular expression, say r,
and a character, say c, as argument and return a new regular expression. Be
careful that the intuition behind this function is not so easy to grasp on first
reading. Essentially this function solves the following problem: if r can match
a string of the form c :: s, what does the regular expression look like that can
match just s. The definition of this function is as follows:

3

der c (∅)
def
= ∅

der c (ϵ) def
= ∅

der c (d) def
= if c = d then ϵ else ∅

der c (r1 + r2)
def
= der c r1 + der c r2

der c (r1 · r2)
def
= if nullable(r1)

then (der c r1) · r2 + der c r2
else (der c r1) · r2

der c (r∗) def
= (der c r) · (r∗)

The first two clauses can be rationalised as follows: recall that der should calcu-
late a regular expression, if the “input” regular expression canmatch a string of
the form c :: s. Since neither∅ nor ϵ can match such a string we return∅. In the
third case we have to make a case-distinction: In case the regular expression is
c, then clearly it can recognise a string of the form c :: s, just that s is the empty
string. Therefore we return the ϵ-regular expression. In the other case we again
return ∅ since no string of the c :: s can be matched. Next come the recursive
cases. Fortunately, the +-case is still relatively straightforward: all strings of
the form c :: s are either matched by the regular expression r1 or r2. So we just
have to recursively call der with these two regular expressions and compose
the results again with +. Yes, makes sense? The ·-case is more complicated: if
r1 · r2 matches a string of the form c :: s, then the first part must be matched by
r1. Consequently, it makes sense to construct the regular expression for s by
calling der with r1 and “appending” r2. There is however one exception to this
simple rule: if r1 can match the empty string, then all of c :: s is matched by r2.
So in case r1 is nullable (that is canmatch the empty string) we have to allow the
choice der c r2 for calculating the regular expression that canmatch s. Therefore
we have to add the regular expression der c r2. The ∗-case is again simple: if r∗

matches a string of the form c :: s, then the first part must be “matched” by a
single copy of r. Therefore we call recursively der c r and “append” r∗ in order
to match the rest of s.

If this did not make sense, here is another way to rationalise the definition
of der by considering the following operation on sets:

Der c A def
= {s | c :: s ∈ A}

This operation essentially transforms a set of strings A by filtering out all strings
that do not start with c and then strips off the c from all the remaining strings.
For example suppose A = { foo, bar, frak} then

Der f A = {oo, rak} , Der b A = {ar} and Der a A = ∅

Note that in the last case Der is empty, because no string in A starts with a.
With this operation we can state the following property about der:

L(der c r) = Der c (L(r))

4

This property clarifies what regular expression der calculates, namely take the
set of strings that r canmatch (that is L(r)), filter out all strings not startingwith
c and strip off the c from the remaining strings—this is exactly the language that
der c r can match.

If we want to find out whether the string abc is matched by the regular ex-
pression r1 then we can iteratively apply der as follows

Input: r1, abc

Step 1: build derivative of a and r1 (r2 = der a r1)

Step 2: build derivative of b and r2 (r3 = der b r2)

Step 3: build derivative of c and r3 (r4 = der b r3)

Step 4: the string is exhausted; test (nullable(r4))
whether r4 can recognise the
empty string

Output: result of the test⇒ true or false

Again the operation Der might help to rationalise this algorithm. We want to
know whether abc ∈ L(r1). We do not know yet. But lets assume it is. Then
Der a L(r1) builds the set where all the strings not starting with a are filtered
out. Of the remaining strings, the a is stripped off. Then we continue with
filtering out all strings not starting with b and stripping off the b from the re-
maining strings, that means we build Der b (Der a (L(r1))). Finally we filter out
all strings not starting with c and strip off c from the remaining string. This is
Der c (Der b (Der a (L(r)))). Now if abc was in the original set (L(r1)), then in
Der c (Der b (Der a (L(r))))must be the empty string. If not then abc was not in
the language we started with.

Our matching algorithm using der and nullable works similarly, just using
regular expression instead of sets. For this we need to extend the notion of
derivatives from characters to strings. This can be done using the following
function, taking a string and regular expression as input and a regular expres-
sion as output.

ders [] r def
= r

ders (c :: s) r def
= ders s (der c r)

This function essentially iterates der taking one character at the time from the
original string until it is exhausted. Having ders in place, we can finally define
our matching algorithm:

matches s r = nullable(ders s r)

We can claim that

matches s r if and only if s ∈ L(r)

5

holds, which means our algorithm satisfies the specification. Of course we can
claim many things…whether the claim holds any water is a different question,
which for example is the point of the Strand-2 Coursework.

This algorithmwas introduced by Janus Brzozowski in 1964. Itsmain aĴrac-
tions are simplicity and being fast, as well as being easily extendable for other
regular expressions such as r{n}, r?, ∼ r and so on (this is subject of Strand-1
Coursework 1).

The Matching Algorithm in Scala
Another aĴraction of the algorithm is that it can be easily implemented in a
functional programming language, like Scala. Given the implementation of
regular expressions in Scala given in the first lecture and handout, the func-
tions for matches are shown in Figure 1.

For running the algorithm with our favourite example, the evil regular ex-
pression a?{n}a{n}, we need to implement the optional regular expression and
the exactly n-times regular expression. This can be done with the translations

def OPT(r: Rexp) = ALT(r, EMPTY)

def NTIMES(r: Rexp, n: Int) : Rexp = n match {
case 0 => EMPTY
case 1 => r
case n => SEQ(r, NTIMES(r, n - 1))

}

Running the matcher with the example, we find it is slightly worse then the
matcher in Ruby and Python. Ooops…

5 10 15 20 25 30
0
5

10
15
20
25
30

as

tim
e
in
se
cs

Python
Ruby
Scala V1

Analysing this failure a bit we notice that for a{n} we generate quite big regular
expressions:

6

1 def nullable (r: Rexp) : Boolean = r match {
2 case NULL => false
3 case EMPTY => true
4 case CHAR(_) => false
5 case ALT(r1, r2) => nullable(r1) || nullable(r2)
6 case SEQ(r1, r2) => nullable(r1) && nullable(r2)
7 case STAR(_) => true
8 }
9

10 def der (c: Char, r: Rexp) : Rexp = r match {
11 case NULL => NULL
12 case EMPTY => NULL
13 case CHAR(d) => if (c == d) EMPTY else NULL
14 case ALT(r1, r2) => ALT(der(c, r1), der(c, r2))
15 case SEQ(r1, r2) =>
16 if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2))
17 else SEQ(der(c, r1), r2)
18 case STAR(r) => SEQ(der(c, r), STAR(r))
19 }
20

21 def ders (s: List[Char], r: Rexp) : Rexp = s match {
22 case Nil => r
23 case c::s => ders(s, der(c, r))
24 }
25

26 def matches(r: Rexp, s: String) : Boolean =
27 nullable(ders(s.toList, r))

Figure 1: Scala implementation of the nullable and derivatives functions.

7

1: a
2: a · a
3: a · a · a

…
13: a · a · a · a · a · a · a · a · a · a · a · a · a

…

Our algorithm traverses such regular expressions at least once every time a
derivative is calculated. So having large regular expressions will cause prob-
lems. This problem is aggravated by a? being represented as a + ϵ.

We can fix this by having an explicit constructor for r{n}. In Scala we would
introduce a constructor like

case class NTIMES(r: Rexp, n: Int) extends Rexp

With this we have a constant “size” regular expression for our running example
nomaĴer how large n is. This means we have to also add cases for nullable and
der. Does the change have any effect?

100 200 300 400 500 600 700 800 900 1,000
0
5

10
15
20
25
30

as

tim
e
in
se
cs

Python
Ruby
Scala V1
Scala V2

Now we are talking business! The modified matcher can within 30 seconds
handle regular expressions up to n = 950 before a StackOverflow is raised.

The moral is that our algorithm is rather sensitive to the size of regular ex-
pressions it needs to handle. This is of course obvious because both nullable
and der need to traverse the whole regular expression. There seems to be one
more source of making the algorithm run faster. The derivative function often
produces “useless” ∅s and ϵs. To see this, consider r = ((a · b) + b)∗ and the
following two derivatives

der a r = ((ϵ · b) +∅) · r
der b r = ((∅ · b) + ϵ) · r
der c r = ((∅ · b) +∅) · r

If we simplify them according to the simple rules from the beginning, we can
replace the right-hand sides by the smaller equivalent regular expressions

8

der a r ≡ b · r
der b r ≡ r
der c r ≡ ∅

I leave it to you to contemplate whether such a simplification can have any im-
pact on the correctness of our algorithm (will it change any answers?). Figure 2
give a simplification function that recursively traverses a regular expression
and simplifies it according to the rules given at the beginning. There are only
rules for +, · and n-times (the laĴer because we added it in the second version
of our matcher). There is no rule for a star, because empirical data and also
a liĴle thought showed that simplifying under a star is waste of computation
time. The simplification function will be called after every derivation. This ad-
ditional step removes all the “junk” the derivative function introduced. Does
this improve the speed? You bet!!

0 2,000 4,000 6,000 8,000 10,000 12,000
0
5

10
15
20
25
30

as

tim
e
in
se
cs Scala V2

Scala V3

9

1 def simp(r: Rexp): Rexp = r match {
2 case ALT(r1, r2) => {
3 val r1s = simp(r1)
4 val r2s = simp(r2)
5 (r1s, r2s) match {
6 case (NULL, _) => r2s
7 case (_, NULL) => r1s
8 case _ => if (r1s == r2s) r1s else ALT(r1s, r2s)
9 }
10 }
11 case SEQ(r1, r2) => {
12 val r1s = simp(r1)
13 val r2s = simp(r2)
14 (r1s, r2s) match {
15 case (NULL, _) => NULL
16 case (_, NULL) => NULL
17 case (EMPTY, _) => r2s
18 case (_, EMPTY) => r1s
19 case _ => SEQ(r1s, r2s)
20 }
21 }
22 case NTIMES(r, n) => NTIMES(simp(r), n)
23 case r => r
24 }
25

26 def ders (s: List[Char], r: Rexp) : Rexp = s match {
27 case Nil => r
28 case c::s => ders(s, simp(der(c, r)))
29 }

Figure 2: The simplification function and modified ders-function.

10

