
Automata and
Formal Languages (1)

Antikythera automaton, 100 BC (Archimedes?)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS

AFL 01, King’s College London, 25. September 2013 – p. 1/20

AFL 01, King’s College London, 25. September 2013 – p. 2/20

Server
.........

GET request

..
webpage

..
POST data Browser

AFL 01, King’s College London, 25. September 2013 – p. 2/20

Server
.........

GET request

..
webpage

..
POST data Browser

programming languages, compilers

transforming strings into structured data

Lexing
(recognising “words”)

Parsing
(recognising “sentences”)

AFL 01, King’s College London, 25. September 2013 – p. 3/20

The subject is quite old:
Turing Machines, 1936
first compiler for COBOL, 1957 (Grace Hopper)
but surprisingly research papers are still
published now

Grace Hopper

(she made it to David Letterman’s Tonight Show,
http://www.youtube.com/watch?v=aZOxtURhfEU)

AFL 01, King’s College London, 25. September 2013 – p. 4/20

http://www.youtube.com/watch?v=aZOxtURhfEU

This Course

the ultimate goal is to implement a small
compiler (a really small one for the JVM)

Let’s start with:
a web-crawler
an email harvester
a web-scraper

AFL 01, King’s College London, 25. September 2013 – p. 5/20

.....
200

.
400

.
600

.
800

.
1,000

.
1,200

.0 .

100

.

200

.

300

.

400

.

n

.

se
cs

A Web-Crawler

...1 given an URL, read the corresponding webpage

...2 extract all links from it

...3 call the web-crawler again for all these links

AFL 01, King’s College London, 25. September 2013 – p. 6/20

A Web-Crawler

...1 given an URL, read the corresponding webpage

...2 if not possible print, out a problem

...3 if possible, extract all links from it

...4 call the web-crawler again for all these links

(we need a bound for the number of recursive calls)
(the purpose is to check all links on my own webpage)

AFL 01, King’s College London, 25. September 2013 – p. 7/20

A Web-Crawler

...1 given an URL, read the corresponding webpage

...2 if not possible print, out a problem

...3 if possible, extract all links from it

...4 call the web-crawler again for all these links

(we need a bound for the number of recursive calls)
(the purpose is to check all links on my own webpage)

AFL 01, King’s College London, 25. September 2013 – p. 7/20

Scala

a simple Scala function for reading webpages

1 import io.Source
2

3 def get_page(url: String) : String = {
4 Source.fromURL(url).take(10000).mkString

get_page(”””http://www.inf.kcl.ac.uk/staff/urbanc/”””)

slightly more complicated for handling errors properly:

1 def get_page(url: String) : String =
2 Try(Source.fromURL(url).take(10000).mkString) getOrElse
3 { println(s” Problem with: $url”); ””}

AFL 01, King’s College London, 25. September 2013 – p. 8/20

Scala

a simple Scala function for reading webpages

1 import io.Source
2

3 def get_page(url: String) : String = {
4 Source.fromURL(url).take(10000).mkString

get_page(”””http://www.inf.kcl.ac.uk/staff/urbanc/”””)

slightly more complicated for handling errors properly:

1 def get_page(url: String) : String =
2 Try(Source.fromURL(url).take(10000).mkString) getOrElse
3 { println(s” Problem with: $url”); ””}

AFL 01, King’s College London, 25. September 2013 – p. 8/20

Scala

a simple Scala function for reading webpages

1 import io.Source
2

3 def get_page(url: String) : String = {
4 Source.fromURL(url).take(10000).mkString

get_page(”””http://www.inf.kcl.ac.uk/staff/urbanc/”””)

slightly more complicated for handling errors properly:

1 def get_page(url: String) : String =
2 Try(Source.fromURL(url).take(10000).mkString) getOrElse
3 { println(s” Problem with: $url”); ””}

AFL 01, King’s College London, 25. September 2013 – p. 8/20

Why Scala?

AFL 01, King’s College London, 25. September 2013 – p. 9/20

...

Why Scala?

AFL 01, King’s College London, 25. September 2013 – p. 9/20

...

Why Scala?

AFL 01, King’s College London, 25. September 2013 – p. 9/20

...

2013: 1%
2014: 3%
2015: 9%
2016: 27%
2017: 81%
2018: 243%

5 yrs

Why Scala?

AFL 01, King’s College London, 25. September 2013 – p. 9/20

...

2013: 1%
2014: 3%
2015: 9%
2016: 27%
2017: 81%
2018: 243%

5 yrs

in London today: 1 Scala job for every 30 Java jobs;
Scala programmers seem to get up to 20% better salary

Why Scala?

AFL 01, King’s College London, 25. September 2013 – p. 9/20

...

2013: 1%
2014: 3%
2015: 9%
2016: 27%
2017: 81%
2018: 243%

5 yrs

in London today: 1 Scala job for every 30 Java jobs;
Scala programmers seem to get up to 20% better salary

..

Scala is a functional and object-oriented
programming language; compiles to the
JVM; does not need null-pointer
exceptions; a course on Coursera

http://www.scala-lang.org

http://www.scala-lang.org

A Regular Expression
… is a pattern or template for specifying strings

”https?://[ˆ”]*”

matches for example
”http://www.foobar.com”

”https://www.tls.org”

AFL 01, King’s College London, 25. September 2013 – p. 10/20

A Regular Expression
… is a pattern or template for specifying strings

”””\”https?://[ˆ\”]*\””””.r

matches for example
”http://www.foobar.com”

”https://www.tls.org”

AFL 01, King’s College London, 25. September 2013 – p. 10/20

rexp.findAllIn(string)
returns a list of all (sub)strings that match the
regular expression

rexp.findFirstIn(string)
returns either None if no (sub)string matches or
Some(s) with the first (sub)string

AFL 01, King’s College London, 25. September 2013 – p. 11/20

1 val http_pattern = ”””\”https?://[^\”]*\””””.r
2

3 def unquote(s: String) = s.drop(1).dropRight(1)
4

5 def get_all_URLs(page: String) : Set[String] = {
6 http_pattern.findAllIn(page).map(unquote).toSet
7 }
8

9 def crawl(url: String, n: Int) : Unit = {
10 if (n == 0) ()
11 else {
12 println(s”Visiting: $n $url”)
13 for (u <- get_all_URLs(get_page(url)))
14 crawl(u, n - 1)
15 }
16 }

crawl(some_start_URL, 2)
AFL 01, King’s College London, 25. September 2013 – p. 12/20

a version that only “crawls” links in my domain:

1 val my_urls = ”””urbanc”””.r
2

3 def crawl(url: String, n: Int) : Unit = {
4 if (n == 0) ()
5 else if (my_urls.findFirstIn(url) == None) ()
6 else {
7 println(s”Visiting: $n $url”)
8 for (u <- get_all_URLs(get_page(url)))
9 crawl(u, n - 1)

10 }
11 }

AFL 01, King’s College London, 25. September 2013 – p. 13/20

a little email “harvester”:

1 val http_pattern = ”””\”https?://[^\”]*\””””.r
2 val my_urls = ”””urbanc”””.r
3 val email_pattern =
4 ”””([a-z0-9_\.-]+)@([\da-z\.-]+)\.([a-z\.]{2,6})”””.r
5

6 def crawl(url: String, n: Int) : Unit = {
7 if (n == 0) ()
8 else {
9 println(s”Visiting: $n $url”)

10 val page = get_page(url)
11 println(email_pattern.findAllIn(page).mkString(”\n”))
12 for (u <- get_all_URLs(page))
13 crawl(u, n - 1)
14 }
15 }

http://net.tutsplus.com/tutorials/other/8-regular-expressions-you-should-know/

AFL 01, King’s College London, 25. September 2013 – p. 14/20

http://net.tutsplus.com/tutorials/other/8-regular-expressions-you-should-know/

Regular Expressions
Their inductive definition:

AFL 01, King’s College London, 25. September 2013 – p. 15/20

r ::= ∅ null
| ϵ empty string / ”” / []
| c character
| r1 · r2 sequence
| r1 + r2 alternative / choice
| r∗ star (zero or more)

Regular Expressions
In Scala:

1 abstract class Rexp
2
3 case object NULL extends Rexp
4 case object EMPTY extends Rexp
5 case class CHAR(c: Char) extends Rexp
6 case class ALT(r1: Rexp, r2: Rexp) extends Rexp
7 case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
8 case class STAR(r: Rexp) extends Rexp

AFL 01, King’s College London, 25. September 2013 – p. 16/20

The Meaning of a
Regular Expression

AFL 01, King’s College London, 25. September 2013 – p. 17/20

L(∅) def
= ∅

L(ϵ) def
= {””}

L(c) def
= {”c”}

L(r1 + r2)
def
= L(r1) ∪ L(r2)

L(r1 · r2)
def
= { s1 @ s2 | s1 ∈ L(r1) ∧ s2 ∈ L(r2) }

L(r∗) def
=

∪
n≥0 L(r)n

L(r)0 def
= {””}

L(r)n+1 def
= L(r) @ L(r)n

(append on sets)
{ s1 @ s2 | s1 ∈ L(r) ∧ s2 ∈ L(r)n }

The Meaning of a
Regular Expression

AFL 01, King’s College London, 25. September 2013 – p. 17/20

L(∅) def
= ∅

L(ϵ) def
= {””}

L(c) def
= {”c”}

L(r1 + r2)
def
= L(r1) ∪ L(r2)

L(r1 · r2)
def
= { s1 @ s2 | s1 ∈ L(r1) ∧ s2 ∈ L(r2) }

L(r∗) def
=

∪
n≥0 L(r)n

L(r)0 def
= {””}

L(r)n+1 def
= L(r) @ L(r)n

(append on sets)
{ s1 @ s2 | s1 ∈ L(r) ∧ s2 ∈ L(r)n }

The Meaning of a
Regular Expression

AFL 01, King’s College London, 25. September 2013 – p. 17/20

L(∅) def
= ∅

L(ϵ) def
= {””}

L(c) def
= {”c”}

L(r1 + r2)
def
= L(r1) ∪ L(r2)

L(r1 · r2)
def
= { s1 @ s2 | s1 ∈ L(r1) ∧ s2 ∈ L(r2) }

L(r∗) def
=

∪
n≥0 L(r)n

L(r)0 def
= {””}

L(r)n+1 def
= L(r) @ L(r)n (append on sets)

{ s1 @ s2 | s1 ∈ L(r) ∧ s2 ∈ L(r)n }

The Meaning of a
Regular Expression

AFL 01, King’s College London, 25. September 2013 – p. 17/20

L(∅) def
= ∅

L(ϵ) def
= {””}

L(c) def
= {”c”}

L(r1 + r2)
def
= L(r1) ∪ L(r2)

L(r1 · r2)
def
= { s1 @ s2 | s1 ∈ L(r1) ∧ s2 ∈ L(r2) }

L(r∗) def
=

∪
n≥0 L(r)n

L(r)0 def
= {””}

L(r)n+1 def
= L(r) @ L(r)n (append on sets)

{ s1 @ s2 | s1 ∈ L(r) ∧ s2 ∈ L(r)n }

The Meaning of Matching

a regular expression r matches a string s is
defined as

s ∈ L(r)

AFL 01, King’s College London, 25. September 2013 – p. 18/20

This Course

We will have a look at:
regular expressions / regular expression matching
derivatives
automata
parsing
grammars
a small interpreter / compiler

AFL 01, King’s College London, 25. September 2013 – p. 19/20

Exam

The question “Is this relevant for the exam?” is
not appreciated!

Whatever is in the homework sheets (and is not
marked “optional”) is relevant for the exam.
No code needs to be written in the exam.

AFL 01, King’s College London, 25. September 2013 – p. 20/20

