Proof

Recall the definitions for regular expressions and the language associated with
a regular expression:

ron= O Lo) Yo
e L(e) €
I L(e) % {ren)
| it L(r1 - 72) € L(r1) @ L(ry)
o L(ry +72) & L(r1) U L(r2)
L) € U,z L)

We also defined the notion of a derivative of a regular expression (the derivative
with respect to a character):

der ¢ (@) = O

der ¢ (e) e 5

der ¢ (d) & if ¢ = d then ¢ else @

derc(ry 4 rz) def (der cry) + (der crs)

derc(ry - rs) & nullable(ry)
then ((der cry) - rq) + (der crs)
else (dercry) - ro

derc(r*) def (dercr) - (r*)

With our definition of regular expressions comes an induction principle. Given
a property P over regular expressions. We can establish that Vr. P(r) holds,
provided we can show the following:

1. P(@), P(e) and P(c) all hold,

2. P(r1 + r2) holds under the induction hypotheses that P(r;) and P(rz)
hold,

3. P(r1-r2) holds under the induction hypotheses that P(r;) and P(r3) hold,
and

4. P(r*) holds under the induction hypothesis that P(r) holds.
Let us try out an induction proof. Recall the definition
DercA% {s | cuse A}
whereby A is a set of strings. We like to prove

def

P(r) = L(dercr) = Derc(L(r))

by induction over the regular expression r.



Proof
According to 1. above we need to prove P(&), P(¢) and P(d). Lets do this in
turn.

e First Case: P(@) is L(der c@) = Der c(L(@)) (a). We have derc@ = @
and L(2) = @. We also have Der c@ = @. Hence we have @ = @ in (a).

e Second Case: P(¢) is L(der ce) = Derc(L(¢€)) (b). We have derce = &,
L(2) = @ and L(e) = {""}. We also have Derc{""} = @. Hence we
have o = @ in (b).

e Third Case: P(d) is L(dercd) = Derc(L(d)) (c). We need to treat the
cases d = cand d # c.

d = ¢: We have der cc = e and L(e) = {""}. We also have L(c) = {"¢"
and Derc{"c"} = {""}. Hence we have {""} = {""} in (¢).

d # c¢: We have der cd = @. We also have Derc{"d"} = @. Hence we
have @ = @ in (¢).

e Fourth Case: P(r; +rq) is L(derc(r1+12)) = Derc(L(r1 +12)) (d). This

is what we have to show. We can assume already:

P(ry):  L(dercry) = Derc(L(r1)) (D
P(ry):  L(dercry) = Derc(L(rs)) (II)

We have that der ¢ (r; +1r3) = (der ¢ry) + (der cry) and also L((der cry) +
(der cry)) = L(der cry) U L(der cry). By (I) and (II) we know that the
left-hand side is Der ¢ (L(r1)) U Der ¢ (L(rz)). You need to ponder a bit,
but you should see that

Derc¢(AU B) = (DercA) U (DercB)

holds for every set of strings A and B. That means the right-hand side of
(d) isalso Der ¢ (L(r1))UDer ¢ (L(r2)), because L(r+re) = L(r1)UL(r2).
And we are done with the fourth case.

e Fifth Case: P(ry - rq) is L(derc(r1 - r2)) = Derc(L(r1 - m2)) (e). We can
assume already:

P(r1):  L(dercry) = Derc(L(ry)) (D
P(rg):  L(dercre) = Derc(L(rq)) (ID)

Let us first consider the case where nullable(r;) holds. Then

derc(r1-r2) = ((dercry) - r2) + (dercra).

The corresponding language of the right-hand side is



(L(dercry) QL(r2)) U L(der crs).

By the induction hypotheses (I) and (II), this is equal to

(Derc(L(r1))@QL(rq)) U (Derc(L(ra)). (xx)

We also know that L(ry - 73) = L(r1) @ L(rz). We have to know what
Der c(L(r1) @QL(rp)) is.

Let us analyse what Der ¢ (A @ B) is for arbitrary sets of strings A and B.
If A does not contain the empty string, then every string in A @ B is of the
form s; @ sy where s; € A and s, € B. So if s; starts with ¢ then we just
have to remove it. Consequently, Derc(A@ B) = (Derc(A)) @ B. This
case does not apply here though, because we already proved that if r; is
nullable, then L(r;) contains the empty string. In this case, every string
in A@ B is either of the form s; @ s, with s; € A and s, € B, or s3 with
s3 € B. This means Der c(AQ B) = ((Der c(A)) Q B)U Der ¢ B. But this
proves that (**) is Der ¢ (L(r1) @Q L(r2)).

Similarly in the case where r; is not nullable.

e Sixth Case:



