
Handout 1

The purpose of a compiler is to transform a program a human can read and
write into code machines can run as fast as possible. Developing a compiler is
an old craft going back to 1952with the first compilerwritten byGraceHopper.1

Why studying compilers nowadays? An interesting answer is given by John
Regehr in his compiler blog: Hand-Point-Right

“We can start off with a couple of observations about the role of compil-
ers. First, hardware is getting weirder rather than getting clocked faster:
almost all processors are multicores and it looks like there is increasing
asymmetry in resources across cores. Processors come with vector units,
crypto accelerators, bit twiddling instructions, and lots of features to make
virtualization and concurrency work. We have DSPs, GPUs, big.little,
and Xeon Phi. This is only scratching the surface. Second, we’re getting
tired of low-level languages and their associated security disasters, wewant
to write new code, to whatever extent possible, in safer, higher-level lan-
guages. Compilers are caught right in the middle of these opposing trends:
one of their main jobs is to help bridge the large and growing gap between
increasingly high-level languages and increasingly wacky platforms. It’s
effectively a perpetual employment act for solid compiler hackers.”

Given this, the goal of this module is to become a solid (beginner) compiler
hacker and as part of the coursework to implement two small compilers for
two very small programming languages.

The first part of the module is about the problem of text processing, which
is needed for compilers, but also for dictionaries, DNA-data, spam-filters and
so on. When looking for a particular string, say "foobar", in a large text we
can use the Knuth-Morris-Pratt algorithm, which is currently the most efficient
general string search algorithm. But often we do not just look for a particular
string, but for string patterns. For example, in program codeweneed to identify
what are the keywords (if, then, while, for, etc) and what are the identifiers
(variable names). A pattern for identifiers could be stated as: they start with a
letter, followed by zero or more letters, numbers and underscores.

Often we also face the problem that we are given a string, for example some
user input, and we want to know whether it matches a particular pattern—is
it an email address, for example. In this way we can exclude user input that
would otherwise have nasty effects on our program (crashing it or making it
go into an infinite loop, if not worse). This kind of “vetting” mechanism is
also implemented in popular network security tools such as Snort and Zeek. Hand-Point-Right

Hand-Point-RightThey scan incoming network traffic for computer viruses or malicious packets.
Similarly filtering out spamusually involves looking for some signature (essen-
tially a string pattern). The point is that the fast Knuth-Morris-Pratt algorithm
for strings is not good enough for such string patterns.

© Christian Urban, King’s College London, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2023
1Who many years ago was invited on a talk show hosted by David Letterman. Hand-Point-Right

1

http://blog.regehr.org/archives/1419
www.snort.org
www.bro.org
https://youtu.be/oE2uls6iIEU

Regular expressions help with conveniently specifying such patterns. The
idea behind regular expressions is that they are a simple method for describ-
ing languages (or sets of strings)…at least languages we are interested in in
Computer Science. For example there is no convenient regular expression for
describing the English language short of enumerating all English words. But
they seem useful for describing for example simple email addresses.2 Consider
the following regular expression

[a-z0-9_.-]+ @ [a-z0-9.-]+ . [a-z.]{2,6} (1)

where the first part, the user name, matches one ormore lowercase letters (a-z),
digits (0-9), underscores, dots and hyphens. The + at the end of the brackets
ensures the “one or more”. Then comes the email @-sign, followed by the do-
main name which must be one or more lowercase letters, digits, underscores,
dots or hyphens (but no underscores). Finally there must be a dot followed
by the toplevel domain. This toplevel domain must be 2 to 6 lowercase letters
including the dot. Example strings which follow this pattern are:

niceandsimple@example.org
very.common@example.co.uk
a.little.lengthy.but.fine@dept.example.ac.uk
other.email-with-dash@example.edu

But for example the following two do not

user@localserver
disposable.style.email.with+symbol@example.com

according to the regular expression we specified in line (1) above. Whether
this is intended or not is a different question (the second email above is actu-
ally an acceptable email address according to the RFC 5322 standard for email
addresses).

As mentioned above, identifiers, or variables, in program code are often
required to satisfy the constraints that they start with a letter and then can be
followed by zero or more letters or numbers and also can include underscores,
but not as the first character. Such identifiers can be recognisedwith the regular
expression

[a-zA-Z] [a-zA-Z0-9_]*

Possible identifiers that match this regular expression are x, foo, foo_bar_1,
A_very_42_long_object_name, but not _i and also not 4you.

Many programming languages offer libraries that can be used to validate
such strings against regular expressions. Also there are some common, and I
am sure very familiar, ways of how to construct regular expressions. For exam-
ple in Scala we have a library implementing the following regular expressions:

2See “8 Regular Expressions You Should Know” http://goo.gl/5LoVX7

2

http://goo.gl/5LoVX7

re* matches 0 or more occurrences of preceding expression
re+ matches 1 or more occurrences of preceding expression
re? matches 0 or 1 occurrence of preceding expression
re{n} matches exactly n number of occurrences of preceding ex-

pression
re{n,m} matches at least n and at most m occurrences of the preced-

ing expression
[...] matches any single character inside the brackets
[^...] matches any single character not inside the brackets
...-... character ranges
\d matches digits; equivalent to [0-9]
. matches every character except newline
(re) groups regular expressions and remembers matched text

The syntax is pretty universal and can be found in many regular expression
libraries. If you need a quick recap about regular expressions and how the
match strings, here is a quick video: https://youtu.be/bgBWp9EIlMM.

Why Study Regular Expressions?

Regular expressions were introduced by Kleene in the 1950ies and they have
been object of intense study since then. They are nowadays pretty much ubiq-
uitous in Computer Science. There are many libraries implementing regular
expressions. I am sure you have come across them before (remember the PRA
or PEP modules?).

Why on earth then is there any interest in studying them again in depth in
this module? Well, one answer is in the following two graphs about regular
expression matching in Python, Ruby, JavaScript, Swift and Java (Version 8).

5 10 15 20 25 30
0
5

10
15
20
25
30

n

ti
m
e
in

se
cs

Graph: (a*)* b and strings a . . . a︸ ︷︷ ︸
n

Python
Java 8
JavaScript

Swift

5 10 15 20 25 30
0
5

10
15
20
25
30

n

ti
m
e
in

se
cs

Graph: a?{n} a{n} and strings a . . . a︸ ︷︷ ︸
n

Python

Ruby

The first graph shows that Python, JavaScript, Swift and Java 8 need approxi-
mately 30 seconds to findout that the regular expression (a*)* bdoes notmatch
strings of 28 as. Similarly, the second shows that Python and Ruby need ap-
proximately 29 seconds for finding out whether a string of 28 as matches the

3

https://youtu.be/bgBWp9EIlMM

regular expression a?{28} a{28}.3 Admittedly, these regular expressions are
carefully chosen to exhibit this exponential behaviour, but similar ones occur
more often than one wants in “real life”. For example, on 20 July 2016 a similar
regular expression brought the webpage Stack Exchange to its knees:

http://stackstatus.net/post/147710624694/
outage-postmortem-july-20-2016

I can also highly recommend a cool webtalk from an engineer from Stack Ex-
change on the same subject:

https://vimeo.com/112065252

A similar problem also occurred in the Atom editor:

http://davidvgalbraith.com/how-i-fixed-atom/

and also when somebody tried to match web-addresses using a relatively sim-
ple regular expression

https://archive.ph/W5Ogx#selection-141.1-141.36

Finally, on 2 July 2019 Cloudflare had a global outage because of a regular ex-
pression (they had no outage for the 6 years before). What happened is nicely
explained in the blog:

https://blog.cloudflare.com/
details-of-the-cloudflare-outage-on-july-2-2019

Such troublesome regular expressions are sometimes called evil regular ex-
pressions because they have the potential to make regular expression matching
engines to topple over, like in Python, Ruby, JavaScript and Java 8. This “top-
pling over” is also sometimes called catastrophic backtracking. I have also seen
the term eternal matching used for this. The problem with evil regular expres-
sions and catastrophic backtracking is that they can have some serious conse-
quences, for example, if you use them in your web-application. The reason
is that hackers can look for these instances where the matching engine behaves
badly and thenmount a nice DoS-attack against your application. These attacks
are already have their own name: Regular Expression Denial of Service Attacks
(ReDoS).

It will be instructive to look behind the “scenes” to find out why Python and
Ruby (and others) behave so badly when matching strings with evil regular
expressions. But we will also look at a relatively simple algorithm that solves
this problem much better than Python and Ruby do…actually it will be two
versions of the algorithm: the first one will be able in the example a?{n} a{n}

3In this example Ruby uses actually the slightly different regular expression
a?a?a?...a?a?aaa...aa, where the a? and a each occur n times. More such test cases can be found
at https://www.owasp.org/index.php/Regular_expression_Denial_of_Service_-_ReDoS.

4

http://stackexchange.com
http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
https://vimeo.com/112065252
http://davidvgalbraith.com/how-i-fixed-atom/
https://archive.ph/W5Ogx#selection-141.1-141.36
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019
https://www.owasp.org/index.php/Regular_expression_Denial_of_Service_-_ReDoS

to process strings of approximately 1,100 as in 23 seconds, while the second
version will even be able to process up to 11,000(!) in 5 seconds, see the graph
below:

0 3,000 6,000 9,000 12,000
0
5

10
15
20
25
30

n

ti
m
e
in

se
cs

Graph: a?{n} a{n} and strings a . . . a︸ ︷︷ ︸
n

Our Algorithm V1

Our Algorithm V2

And in the case of the regular expression (a*)* b and strings of as we will beat
Java 8 by factor of approximately 1,000,000 (note the scale on the x-axis).

0 1 2 3 4 5

·106

0
5

10
15
20
25
30

n

ti
m
e
in

se
cs

Graph: (a*)* b and strings a . . . a︸ ︷︷ ︸
n

Our Algorithm V2

You might have wondered above why I looked at the (now) old Java 8: the
reason is that Java 9 and later versions are a bit better, but we will still beat
them hands down with our regex matcher.

Basic Regular Expressions

The regular expressions shown earlier for Scala, we will in this module call
extended regular expressions. The ones we will mainly study are basic regular ex-
pressions, which by convention we will just call regular expressions, if it is clear
what we mean. The attraction of (basic) regular expressions is that many fea-
tures of the extended ones are just syntactic sugar. (Basic) regular expressions
are defined by the following grammar:

5

r ::= 0 null language
| 1 empty string / "" / []
| c single character
| r1 + r2 alternative / choice
| r1 · r2 sequence
| r∗ star (zero or more)

Because we overload our notation, there are some subtleties you should be
aware of. When regular expressions are referred to, then 0 (in bold font) does
not stand for the number zero: rather it is a particular pattern that does not
match any string. Similarly, in the context of regular expressions, 1 does not
stand for the number one, but for a regular expression that matches the empty
string. The letter c stands for any character from the alphabet at hand. Again in
the context of regular expressions, it is a particular pattern that can match the
specified character. You should also be careful with our overloading of the star:
assuming you have read the handout about our basic mathematical notation,
you will see that in the context of languages (sets of strings) the star stands for
an operation on languages. Here r∗ stands for a regular expression, which is
different from the operation on sets is defined as

A?
def
=

⋃
0≤n

An

We will use parentheses to disambiguate regular expressions. Parentheses
are not really part of a regular expression, and indeed we do not need them in
our code because there the tree structure of regular expressions is always clear.
But for writing them down in a more mathematical fashion, parentheses will
be helpful. For example we will write (r1 + r2)

∗, which is different from, say
r1 + (r2)

∗. This can be seen if we write regular expressions as trees:

/

*

+

r1 r2

/

+

r1 *

r2

The regular expression on the left means roughly zero or more times r1 or r2,
while the one on the right means r1, or zero or more times r2. This will turn
out to be two different patterns, which match in general different strings. We
should also write (r1 + r2) + r3, which is different from the regular expression
r1 + (r2 + r3), but in case of+ and ·we actually do not care about the order and
justwrite r1 + r2 + r3, or r1 · r2 · r3, respectively. The reasons for this carelessness
will become clear shortly.

In the literature you will often find that the choice r1 + r2 is written as r1 | r2
or r1 || r2. Also, often our 0 and 1 are written ∅ and ε, respectively. Following
the convention in the literature, we will often omit the ·. This is to make some

6

concrete regular expressions more readable. For example the regular expres-
sion for email addresses shown in (1) would fully expanded look like

[...]+ · @ · [...]+ · . · [...]{2,6}

which is much less readable than the regular expression in (1). Similarly for the
regular expression that matches the string hello we should write

h · e · l · l · o

but often just write hello.
If you prefer to think in terms of the implementation of regular expressions

in Scala, the constructors and classes relate as follows4

0 7→ ZERO
1 7→ ONE
c 7→ CHAR(c)

r1 + r2 7→ ALT(r1, r2)
r1 · r2 7→ SEQ(r1, r2)

r∗ 7→ STAR(r)

Asource of confusionmight arise from the fact thatwe use the term basic reg-
ular expression for the regular expressions used in “theory” and defined above,
and extended regular expression for the ones used in “practice”, for example in
Scala. If runtime is not an issue, then the latter can be seen as syntactic sugar of
the former. For example we could replace

r+ 7→ r · r∗

r? 7→ 1+ r
\d 7→ 0 + 1 + 2 + . . . + 9

[a - z] 7→ a + b + . . . + z

The Meaning of Regular Expressions

So far we have only considered informally what the meaning of a regular ex-
pression is. This is not good enough for specifications of what algorithms are
supposed to do or which problems they are supposed to solve.

To define the meaning of a regular expression we will associate with every
regular expression a language—a set of strings. This language contains all the
strings the regular expression is supposed to match. To understand what is
going on here it is crucial that you have read the handout about basic mathe-
matical notations.

Themeaning of a regular expression can be defined by a recursive function
called L (for language), which is defined as follows

4More about Scala is in the handout aboutA Crash-Course on Scala from PEP.

7

L(0) def
= {}

L(1) def
= {[]}

L(c) def
= {”c”} or equivalently

def
= {[c]}

L(r1 + r2)
def
= L(r1) ∪ L(r2)

L(r1 · r2)
def
= L(r1)@ L(r2)

L(r∗) def
= (L(r))?

As a result we can now precisely state what the meaning, for example, of the
regular expression h · e · l · l · o is, namely

L(h · e · l · l · o) = {”hello”}

This is expected because this regular expression is only supposed to match
the “hello”-string. Similarly if we have the choice-regular-expression a + b, its
meaning is

L(a + b) = {”a”, ”b”}

You can now also see why we do not make a difference between the different
regular expressions (r1 + r2) + r3 and r1 + (r2 + r3)…they are not the same
regular expression, but they have the same meaning. For example you can do
the following calculation which shows they have the same meaning:

L((r1 + r2) + r3) = L(r1 + r2) ∪ L(r3)

= L(r1) ∪ L(r2) ∪ L(r3)

= L(r1) ∪ L(r2 + r3)

= L(r1 + (r2 + r3))

That means both languages are the same. The point of the definition of L is
that we can use it to precisely specify when a string s is matched by a regular
expression r, namely if and only if s ∈ L(r). In fact we will write a program
match that takes a string s and a regular expression r as arguments and returns
yes, if s ∈ L(r) and no, if s 6∈ L(r). We leave this for the next lecture.

There is one more feature of regular expressions that is worth mentioning
here. Given some strings, there are in general many different regular expres-
sions that can recognise these strings. This is obvious with the regular expres-
sion a + b which can match the strings a and b. But also the regular expression
b + a would match the same strings. However, sometimes it is not so obvious
whether two regular expressions match the same strings: for example do r∗

and 1+ r · r∗ match the same strings? What about 0∗ and 1∗? This suggests the
following relation between equivalent regular expressions:

r1 ≡ r2
def
= L(r1) = L(r2)

8

That means two regular expressions are said to be equivalent if they match the
same set of strings. That is their meanings are the same. Therefore we do not
really distinguish between the different regular expression (r1 + r2) + r3 and
r1 + (r2 + r3), because they are equivalent. I leave you to the question whether

0∗ ≡ 1∗

holds or not? Such equivalences will be important for our matching algorithm,
because we can use them to simplify regular expressions, which will mean we
can speed up the calculations.

My Fascination for Regular Expressions

Upuntil a few years ago Iwas not really interested in regular expressions. They
have been studied for the last 60 years (by smarter people than me)—surely
nothing new can be found out about them. I even have the vague recollection
that I did not quite understand them during my undergraduate study. If I re-
member correctly,5 I got utterly confused about 1 (which my lecturer wrote as
ε) and the empty string (which he also wrote as ε).6 Since then, I have used
regular expressions for implementing lexers and parsers as I have always been
interested in all kinds of programming languages and compilers, which invari-
ably need regular expressions in some form or shape.

To understand my fascination nowadayswith regular expressions, you need
to know that my main scientific interest for the last 17 years has been with the-
orem provers. I am a core developer of one of them.7 Theorem provers are
systems in which you can formally reason about mathematical concepts, but
also about programs. In this way theorem provers can help with the menacing
problem of writing bug-free code. Theorem provers have proved already their
value in a number of cases (even in terms of hard cash), but they are still clunky
and difficult to use by average programmers.

Anyway, in about 2011 I came across the notion of derivatives of regular
expressions. This notion allows one to do almost all calculations with regular
expressions on the level of regular expressions, not needing any automata (you
will see we only touch briefly on automata in lecture 3). Automata are usually
themain object of study in formal language courses. The avoidance of automata
is crucial for me because automata are graphs and it is rather difficult to reason
about graphs in theorem provers. In contrast, reasoning about regular expres-
sions is easy-peasy in theorem provers. Is this important? I think yes, because
according to Kuklewicz nearly all POSIX-based regular expression matchers
are buggy.8 With my PhD students FahadAusaf and Chengsong Tan, I proved
the correctness for two suchmatchers that were proposed by Sulzmann and Lu
in 2014.9 A variant of which you have already seen in PEP as CW3 and you

5That was really a long time ago.
6Obviously the lecturer must have been bad ;o)
7http://isabelle.in.tum.de
8http://www.haskell.org/haskellwiki/Regex_Posix
9http://goo.gl/bz0eHp

9

http://isabelle.in.tum.de
http://www.haskell.org/haskellwiki/Regex_Posix
http://goo.gl/bz0eHp

will see again in the CFL in the first two CWs. What we have not yet figured
out that our matchers are universally fast, meaning they do not explode on any
input. Hopefully we can also prove that the machine code(!) that implements
our matchers efficiently is correct also. Writing programs in this way does not
leave any room for any errors or bugs. How nice!

What also helped with my fascination with regular expressions is that we
could indeed find out new things about them that have surprised some ex-
perts. Together with two colleagues fromChina, I was able to prove theMyhill-
Nerode theorem by only using regular expressions and the notion of deriva-
tives. Earlier versions of this theorem used always automata in the proof. Us-
ing this theorem we can show that regular languages are closed under com-
plementation, something which Bill Gasarch in his Computational Complexity
blog10 assumed can only be shown via automata. So even somebody who has
written a 700+-page book11 on regular expressions did not know better. Well,
we showed it can also be done with regular expressions only.12 What a feeling
when you are an outsider to the subject!

To conclude: Despite my early ignorance about regular expressions, I find
them now extremely interesting. They have practical importance (remember
the shocking runtime of the regular expressionmatchers in Python, Ruby, Swift
and Java in some instances and the problems in Stack Exchange and the Atom
editor—even regex libraries inmoremodernprogramming languages, likeRust,
have their problems). They are used in tools like Snort and Zeek in order to
monitor network traffic. They have a beautiful mathematical theory behind
them, which can be sometimes quite deep and which sometimes contains hid-
den snares. People who are not very familiar with the mathematical back-
ground of regular expressions get them consistently wrong (this is surprising
given they are a supposed to be a core skill for computer scientists). The hope is
that we can do better in the future—for example by proving that the algorithms
actually satisfy their specification and that the corresponding implementations
do not contain any bugs. We are close, but not yet quite there.

Notwithstanding my fascination, I am also happy to admit that regular ex-
pressions have their shortcomings. There are some well-known “theoretical”
shortcomings, for example recognising strings of the form anbn is not possi-
ble with regular expressions. This means for example if we try to recognise
whether parentheses are well-nested in an expression is impossible with (ba-
sic) regular expressions. I am not so bothered by these shortcomings. What
I am bothered about is when regular expressions are in the way of practical
programming. For example, it turns out that the regular expression for email
addresses shown in (1) is hopelessly inadequate for recognising all of them (de-
spite being touted as something every computer scientist should know about).
The W3 Consortium (which standardises the Web) proposes to use the follow-
ing, already more complicated regular expressions for email addresses:

10http://goo.gl/2R11Fw
11http://goo.gl/fD0eHx
12https://nms.kcl.ac.uk/christian.urban/Publications/rexp.pdf

10

http://goo.gl/2R11Fw
http://goo.gl/fD0eHx
https://nms.kcl.ac.uk/christian.urban/Publications/rexp.pdf

[a-zA-Z0-9.!#$%&'*+/=?^_`{|}~-]+@[a-zA-Z0-9-]+(?:\.[a-zA-Z0-9-]+)*

But they admit that by using this regular expression they wilfully violate the
RFC 5322 standard, which specifies the syntax of email addresses. With their
proposed regular expression they are too strict in some cases and too lax in
others…not a good situation to be in. A regular expression that is claimed to be
closer to the standard is shown in Figure 1. Whether this claim is true or not,
I would not know—the only thing I can say about this regular expression is it
is a monstrosity. However, this might actually be an argument against the RFC
standard, rather than against regular expressions. A similar argument is made
in

http:
//elliot.land/post/its-impossible-to-validate-an-email-address

which explains some of the crazier parts of email addresses. Still it is good
to know that some tasks in text processing just cannot be achieved by using
regular expressions. But for what we want to use them (lexing) they are pretty
good.

Finally there is a joke about regular expressions:

“Sometimes you have a programming problem and it seems like the best
solution is to use regular expressions; now you have two problems.”

11

http://elliot.land/post/its-impossible-to-validate-an-email-address
http://elliot.land/post/its-impossible-to-validate-an-email-address

(?:(?:\r\n)?[\t])*(?:(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t]
)+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:
\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(
?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[
\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\0
31]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\
](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+
(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:
(?:\r\n)?[\t])*))*|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z
|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)
?[\t])*)*\<(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\
r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[
\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)

?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t]
)*))*(?:,@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[
\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*

)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t]
)+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*)
:(?:(?:\r\n)?[\t]))?(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+
|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r
\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:
\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t
]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031
]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](
?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?
:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?
:\r\n)?[\t])*))*\>(?:(?:\r\n)?[\t])*)|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?
:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?
[\t]))*"(?:(?:\r\n)?[\t])*)*:(?:(?:\r\n)?[\t])*(?:(?:(?:[^()<>@,;:\\".\[\]
\000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|
\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>
@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"
(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t]
)*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?
:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[
\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*|(?:[^()<>@,;:\\".\[\] \000-
\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(
?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)*\<(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,;
:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([
^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\"
.\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\
]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*(?:,@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\
[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\
r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\]
\000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]
|\\.)*\](?:(?:\r\n)?[\t])*))*)*:(?:(?:\r\n)?[\t])*)?(?:[^()<>@,;:\\".\[\] \0
00-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\
.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,
;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?
:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*
(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".
\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[
^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]
]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*\>(?:(?:\r\n)?[\t])*)(?:,\s*(
?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(
?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[
\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t
])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t
])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?
:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|
\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*|(?:
[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\
]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)*\<(?:(?:\r\n)
?[\t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["
()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)
?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>
@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*(?:,@(?:(?:\r\n)?[
\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,

;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t]
)*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*)*:(?:(?:\r\n)?[\t])*)?
(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".
\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:
\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\[
"()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])
))@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])
+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\
.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z
|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*\>(?:(
?:\r\n)?[\t])*))*)?;\s*)

Figure 1: Nothing that can be said about this regular expression…except it is a
monstrosity.

12

