
CSCI 742 - Compiler Construction

Lecture 10
Top-Down vs. Bottom-up Parsing

Instructor: Hossein Hojjat

February 7, 2018

Recap: Compiler Phases

Source Code
(concrete syntax) i f (=x 0) 1;

Lexical Analysis

if (==Token Stream

Syntax Analysis
(Parsing)IF

Semantic Analysis

Attributed AST

Error

= x =x +

0x) x = x + 1 ;

(Name Analysis,
Type Analysis, ...)

Abstract Syntex Tree

Code Generation

(AST) x 0 x +
===

x 1

IF

x 0 x +
===

x 1

boolean

int
int

int int

int
int

16: iload_2
17: ifne 24
20: iload_2
21: iconst_1
22: iadd
23: istore_2
24: ...

Machine Code

1

Approaches to Parsing

Top Down (Goal driven)

• Start from the start non-terminal

• Grow parse tree downwards to match the input word

• Easier to understand and program manually

Bottom Up (Data Driven)

• Start from the input word

• Build up parse tree which has start non-terminal as root

• More powerful and used by most parser generators

E

E T
+

T

num

num

2

Directionality

Directional Methods

• Process the input symbol by symbol from Left to right

• Advantage: parsing starts and makes progress before the last symbol
of the input is seen

• Example: LL and LR parsers

Non-directional Methods

• Allow access to input in an arbitrary order

• Require the entire input to be in memory before parsing can start

• Advantage: allow more flexible grammars than directional parsers

• Example: CYK parser

We first focus on directional parsers (will discuss CYK after LL and LR)

3

Directionality

Directional Methods

• Process the input symbol by symbol from Left to right

• Advantage: parsing starts and makes progress before the last symbol
of the input is seen

• Example: LL and LR parsers

Non-directional Methods

• Allow access to input in an arbitrary order

• Require the entire input to be in memory before parsing can start

• Advantage: allow more flexible grammars than directional parsers

• Example: CYK parser

We first focus on directional parsers (will discuss CYK after LL and LR)
3

Parsing: Top-down vs. Bottom-up (Directional)

input: num + num grammar:

E → E + T

E → T

T → num

Top-down Parsing

E

E + T

T + T

num+ T

num+ num

Finds leftmost derivation

E

Remaining Input: num + num

Match Input Token!

4

Parsing: Top-down vs. Bottom-up (Directional)

input: num + num grammar:

E → E + T

E → T

T → num

Top-down Parsing

E

E + T

T + T

num+ T

num+ num

Finds leftmost derivation

E

E T

+

Remaining Input: num + num

Match Input Token!

4

Parsing: Top-down vs. Bottom-up (Directional)

input: num + num grammar:

E → E + T

E → T

T → num

Top-down Parsing

E

E + T

T + T

num+ T

num+ num

Finds leftmost derivation

E

E T

+

T

Remaining Input: num + num

Match Input Token!

4

Parsing: Top-down vs. Bottom-up (Directional)

input: num + num grammar:

E → E + T

E → T

T → num

Top-down Parsing

E

E + T

T + T

num+ T

num+ num

Finds leftmost derivation

E

E T

+

T

num

Remaining Input: num + num

Match Input Token!
4

Parsing: Top-down vs. Bottom-up (Directional)

input: num + num grammar:

E → E + T

E → T

T → num

Top-down Parsing

E

E + T

T + T

num+ T

num+ num

Finds leftmost derivation

E

E T

+

T

num

Remaining Input: + num

Match Input Token!
4

Parsing: Top-down vs. Bottom-up (Directional)

input: num + num grammar:

E → E + T

E → T

T → num

Top-down Parsing

E

E + T

T + T

num+ T

num+ num

Finds leftmost derivation

E

E T

+

T

num num

Remaining Input: num

Match Input Token!
4

Parsing: Top-down vs. Bottom-up (Directional)

input: num + num grammar:

E → E + T

E → T

T → num

Top-down Parsing

E

E + T

T + T

num+ T

num+ num

Finds leftmost derivation

E

E T

+

T

num num

Remaining Input:

Match Input Token!

4

Parsing: Top-down vs. Bottom-up (Directional)

input: num + num grammar:

E → E + T

E → T

T → num

Bottom-up Parsing

E

E + T

E + num

T + num

num+ num

Finds reverse rightmost
derivation

Remaining Input: num + num

Match Input Token!

4

Parsing: Top-down vs. Bottom-up (Directional)

input: num + num grammar:

E → E + T

E → T

T → num

num

Bottom-up Parsing

E

E + T

E + num

T + num

num+ num

Finds reverse rightmost
derivation

Remaining Input: + num

Match Input Token!

4

Parsing: Top-down vs. Bottom-up (Directional)

input: num + num grammar:

E → E + T

E → T

T → num

T

num

Bottom-up Parsing

E

E + T

E + num

T + num

num+ num

Finds reverse rightmost
derivation

Remaining Input: + num

Match Input Token!

4

Parsing: Top-down vs. Bottom-up (Directional)

input: num + num grammar:

E → E + T

E → T

T → num

E

T

num

Bottom-up Parsing

E

E + T

E + num

T + num

num+ num

Finds reverse rightmost
derivation

Remaining Input: + num

Match Input Token!

4

Parsing: Top-down vs. Bottom-up (Directional)

input: num + num grammar:

E → E + T

E → T

T → num

E T

+

T

num num

Bottom-up Parsing

E

E + T

E + num

T + num

num+ num

Finds reverse rightmost
derivation

Remaining Input:

Match Input Token!

4

Parsing: Top-down vs. Bottom-up (Directional)

input: num + num grammar:

E → E + T

E → T

T → num

E

E T

+

T

num num

Bottom-up Parsing
E

E + T

E + num

T + num

num+ num

Finds reverse rightmost
derivation

Remaining Input:

Match Input Token!

4

Parsing: Top-down vs. Bottom-up (Directional)

input: num + num grammar:

E → E + T

E → T

T → num

Top-down Parsing

E

E + T

T + T

num+ T

num+ num

Finds leftmost derivation

E

E T

+

T

num num

Bottom-up Parsing
E

E + T

E + num

T + num

num+ num

Finds reverse rightmost
derivation

Match Input Token!

4

Parsing: Top-down vs. Bottom-up (Directional)

Bottom-up: Don’t need to figure out as much of the parse tree for
a given amount of input (more powerful)

Top-down: Easier to understand and program manually

scanned unscanned

Top-down

scanned unscanned

Bottom-up

5

Parsing Complexity

• For certain classes of constrained CFGs, we can always parse in
linear time

- LL parsers (Use a top-down strategy)
- LR parsers (Use a bottom-up strategy)

• The first L means the parser reads input from Left to right
without backing up

• LL: Left-to-right scan, Leftmost derivation

• LR: Left-to-right scan, Rightmost derivation in reverse

• Any ambiguous CFG can neither be LL nor LR

• Deterministic: they produce a single correct parse without guessing
or backtracking

6

Lookahead Input Symbols

• Build a top-down parse tree for the following input:

num num

current
token

+
1) E → num

2) E → num+ E

7

Lookahead Input Symbols

• Build a top-down parse tree for the following input:

num num

current
token

+
1) E → num

2) E → num+ E

Backtracking:
Make a choice of a production rule, if it fails backtrack and evaluate the
next choice

E
1

num

7

Lookahead Input Symbols

• Build a top-down parse tree for the following input:

num num

current
token

+
1) E → num

2) E → num+ E

Backtracking:
Make a choice of a production rule, if it fails backtrack and evaluate the
next choice

E
1

num

Matches input token, choice is accepted for now
7

Lookahead Input Symbols

• Build a top-down parse tree for the following input:

num num

current
token

+
1) E → num

2) E → num+ E

Backtracking:
Make a choice of a production rule, if it fails backtrack and evaluate the
next choice

E
1

num

Matches input token, choice is accepted for now
7

Lookahead Input Symbols

• Build a top-down parse tree for the following input:

num num

current
token

+
1) E → num

2) E → num+ E

Backtracking:
Make a choice of a production rule, if it fails backtrack and evaluate the
next choice

E
1

num

Can’t match input token, need to backtrack
7

Lookahead Input Symbols

• Build a top-down parse tree for the following input:

num num

current
token

+
1) E → num

2) E → num+ E

Backtracking:
Make a choice of a production rule, if it fails backtrack and evaluate the
next choice

E
1

num

Can’t match input token, need to backtrack
7

Lookahead Input Symbols

• Build a top-down parse tree for the following input:

num num

current
token

+
1) E → num

2) E → num+ E

Backtracking:
Make a choice of a production rule, if it fails backtrack and evaluate the
next choice

7

Lookahead Input Symbols

• Build a top-down parse tree for the following input:

num num

current
token

+
1) E → num

2) E → num+ E

Backtracking:
Make a choice of a production rule, if it fails backtrack and evaluate the
next choice

E

E

num +

2

7

Lookahead Input Symbols

• Build a top-down parse tree for the following input:

num num

current
token

+
1) E → num

2) E → num+ E

Predictive Parsing:

• Allow parser to “lookahead” k number of tokens from the input

• Decide which production to apply based on next tokens

• Efficient: no need to backtrack

• LL(1): Parser can only look at current token

• LL(2): Parser can only look at current token and the token follows it

• LL(k): Parser can look at k tokens from input

7

LL(k) Parsing

• Determine a leftmost derivation of the input while:
• Read the input from Left to right
• Look ahead at most k input tokens

• Starting from the start symbol, grow a parse tree top-down in
left-to-right pre-order while:

• Read the input from Left to right
• Look ahead at most k input tokens beyond the input prefix matched

by the parse tree derived so far

8

LL(k) Parsing

S

A B

C D

Tree
Frontier

?

k lookahead

• Parse tree from S to the examined input is complete

• Look-ahead tokens must fully specify the parse tree from S to the
input symbol

• In the example we have to know that S → AB before we even see
any of B

9

LL(k) Parsing

S

A B

C D

Tree
Frontier

?

k lookahead

• Assume there are two production rules for D:
D → α1 | α2 (αi ∈ (N ∪ T)∗)

• If DB ⇒∗ w1 and DB ⇒∗ w2 (wi is a word)

• If α2 6= α2 then w1 and w2 must differ in first k symbols

9

Bottom-up Parsing

S

A

C D

k lookahead

Tree Frontier
?

• Bottom-up parser builds the tree only above the examined input

• Although we are at the same point in the input string,
the production S → AB has not been specified yet

• This delayed decision allows us to parse more grammars than
predictive top-down parsing (LL)

9

Exercise

Question
Is the following grammar LL(k)? If yes, for which value of k?

S → AB

A→ aAb | ε
B → bB | ε

Answer
Grammar is LL(1).
Any derivation starts with S ⇒ AB.
The next derivation step uses one of the productions A→ aAb or A→ ε

based on the next current token.
The same argument holds for B-productions.

10

Exercise

Question
Is the following grammar LL(k)? If yes, for which value of k?

S → AB

A→ aAb | ε
B → bB | ε

Answer
Grammar is LL(1).
Any derivation starts with S ⇒ AB.
The next derivation step uses one of the productions A→ aAb or A→ ε

based on the next current token.
The same argument holds for B-productions.

10

Exercise

Question
Is the following grammar LL(k)? If yes, for which value of k?

S → A | B
A→ aaA | aa
B → aaB | a

11

Exercise

Question
Is the following grammar LL(k)? If yes, for which value of k?

S → A | B
A→ a | c
B → b | c

12

Exercise

Question
Is the following grammar LL(k)? If yes, for which value of k?

S → aaA | AB
A→ a | ε | ab
B → b

13

Exercise

Question
Is the following grammar LL(k)? If yes, for which value of k?

S → Ab | Ac
A→ aA | ε

Answer

• Grammar is not LL(k) parser for any finite k

• Expanding S to one of the alternatives is the first step a top down
parser has to do

• There can always be a word that needs more than k lookahead

• For a word beginning with k a’s parser needs to look at at least
(k + 1) lookahead tokens to make the decision

14

Exercise

Question
Is the following grammar LL(k)? If yes, for which value of k?

S → Ab | Ac
A→ aA | ε

Answer

• Grammar is not LL(k) parser for any finite k

• Expanding S to one of the alternatives is the first step a top down
parser has to do

• There can always be a word that needs more than k lookahead

• For a word beginning with k a’s parser needs to look at at least
(k + 1) lookahead tokens to make the decision

14

Left-recursive Grammars

• Left recursive grammars cannot be parsed by a LL(k)-parser

• Predictive parser uses the lookahead tokens to choose the correct
production rule

• For each k lookahead tokens there must be a unique production

• On a left-recursive grammar the algorithm may try to expand a
production without consuming any input

• Parse tree continuously get expanded without any advance in input

• Parsing process may never terminate!

15

