
Handout 2

Having specified what problem our matching algorithm, match, is supposed to
solve, namely for a given regular expression r and string s answer true if and
only if

s ∈ L(r)

we can look at an algorithm to solve this problem. Clearly we cannot use the
function L directly for this, because in general the set of strings L returns is
infinite (recall what L(a∗) is). In such cases there is no way we can implement
an exhaustive test for whether a string is member of this set or not.

The algorithm we will define below consists of two parts. One is the function
nullable which takes a regular expression as argument and decides whether it
can match the empty string (this means it returns a boolean). This can be easily
defined recursively as follows:

nullable(∅)
def
= false

nullable(ϵ)
def
= true

nullable(c)
def
= false

nullable(r1 + r2)
def
= nullable(r1) ∨ nullable(r2)

nullable(r1 · r2)
def
= nullable(r1) ∧ nullable(r2)

nullable(r∗)
def
= true

The idea behind this function is that the following property holds:

nullable(r) if and only if ”” ∈ L(r)

Note on the left-hand side we have a function we can implement; on the right
we have its specification.

The other function of our matching algorithm calculates a derivative of a
regular expression. This is a function which will take a regular expression, say
r, and a character, say c, as argument and return a new regular expression. Be
careful that the intuition behind this function is not so easy to grasp on first
reading. Essentially this function solves the following problem: if r can match
a string of the form c :: s, what does the regular expression look like that can
match just s. The definition of this function is as follows:

der c (∅)
def
= ∅

der c (ϵ)
def
= ∅

der c (d)
def
= if c = d then ϵ else ∅

der c (r1 + r2)
def
= der c r1 + der c r2

der c (r1 · r2)
def
= if nullable(r1)

then (der c r1) · r2 + der c r2
else (der c r1) · r2

der c (r∗)
def
= (der c r) · (r∗)

1

The first two clauses can be rationalised as follows: recall that der should calcu-
late a regular expression, if the “input” regular expression can match a string of
the form c ::s. Since neither ∅ nor ϵ can match such a string we return ∅. In the
third case we have to make a case-distinction: In case the regular expression
is c, then clearly it can recognise a string of the form c :: s, just that s is the
empty string. Therefore we return the ϵ-regular expression. In the other case
we again return ∅ since no string of the c :: s can be matched. The +-case is
relatively straightforward: all strings of the form c ::s are either matched by the
regular expression r1 or r2. So we just have to recursively call der with these
two regular expressions and compose the results again with +. The ·-case is
more complicated: if r1 · r2 matches a string of the form c ::s, then the first part
must be matched by r1. Consequently, it makes sense to construct the regular
expression for s by calling der with r1 and “appending” r2. There is however
one exception to this simple rule: if r1 can match the empty string, then all of
c :: s is matched by r2. So in case r1 is nullable (that is can match the empty
string) we have to allow the choice der c r2 for calculating the regular expres-
sion that can match s. The ∗-case is again simple: if r∗ matches a string of the
form c ::s, then the first part must be “matched” by a single copy of r. Therefore
we call recursively der c r and “append” r∗ in order to match the rest of s.

Another way to rationalise the definition of der is to consider the following
operation on sets:

Der cA
def
= {s | c ::s ∈ A}

which essentially transforms a set of strings A by filtering out all strings that
do not start with c and then strips off the c from all the remaining strings. For
example suppose A = {”foo”, ”bar”, ”frak”} then

Der f A = {”oo”, ”rak”} , Der bA = {”ar”} and Der aA = ∅

Note that in the last case Der is empty, because no string in A starts with a.
With this operation we can state the following property about der:

L(der c r) = Der c (L(r))

This property clarifies what regular expression der calculates, namely take the
set of strings that r can match (that is L(r)), filter out all strings not starting
with c and strip off the c from the remaining strings—this is exactly the language
that der c r can match.

If we want to find out whether the string ”abc” is matched by the regular
expression r then we can iteratively apply Der as follows

1. Der a (L(r))

2. Der b (Der a (L(r)))

3. Der c (Der b (Der a (L(r))))

2

In the last step we need to test whether the empty string is in the set. Our
matching algorithm will work similarly, just using regular expression instead
of sets. For this we need to lift the notion of derivatives from characters to
strings. This can be done using the following function, taking a string and
regular expression as input and a regular expression as output.

ders [] r
def
= r

ders (c ::s) r
def
= ders s (der c r)

Having ders in place, we can finally define our matching algorithm:

match s r = nullable(ders s r)

We claim that

match s r if and only if s ∈ L(r)

holds, which means our algorithm satisfies the specification. This algorithm was
introduced by Janus Brzozowski in 1964. Its main attractions are simplicity and
being fast, as well as being easily extendable for other regular expressions such
as r{n}, r?, ∼ r and so on.

3

1 def nullable (r: Rexp) : Boolean = r match {

2 case NULL => false

3 case EMPTY => true

4 case CHAR(_) => false

5 case ALT(r1 , r2) => nullable(r1) || nullable(r2)

6 case SEQ(r1 , r2) => nullable(r1) && nullable(r2)

7 case STAR(_) => true

8 }

1 def der (r: Rexp , c: Char) : Rexp = r match {

2 case NULL => NULL

3 case EMPTY => NULL

4 case CHAR(d) => if (c == d) EMPTY else NULL

5 case ALT(r1 , r2) => ALT(der(r1, c), der(r2 , c))

6 case SEQ(r1 , r2) =>

7 if (nullable(r1)) ALT(SEQ(der(r1, c), r2), der(r2 , c))

8 else SEQ(der(r1 , c), r2)

9 case STAR(r) => SEQ(der(r, c), STAR(r))

10 }

11

12 def ders (s: List[Char], r: Rexp) : Rexp = s match {

13 case Nil => r

14 case c::s => ders(s, der(c, r))

15 }

Figure 1: Scala implementation of the nullable and derivatives functions.

4

