
Scala in 6CCS3CFL
For the coursework in this module you are free to use any programming lan‑
guage you like, but I will show you all my code using Scala—I hope you have
fond memories of Scala from PEP. But as said, you do not need to use Scala for
your own code.1 I will use the current stable version of Scala, which is 2.13.3.
If you need a reminder of the Scala handouts for PEP have a look

The main difference to the Scala I showed you in PEP is that in CFL I will use
the Ammonite REPL

https://ammonite.io/#Ammonite-REPL

This is a drop‑in replacement for the original Scala REPL and works very sim‑
ilarly, for example

$ amm
Loading...
Welcome to the Ammonite Repl 2.2.0 (Scala 2.13.3 Java 9)
scala > 1 + 2
res0: Int = 3

Ammonite uses the same Scala compiler, just adds some useful features on top
of it. It is quite main‑stream in the Scala community and it should therefore
be very easy for you to install amm. The big advantage of Ammonite is that it
comes with some additional libraries already built‑in and also allows one to
easily break up code into smaller modules. For example reading and writing
files in Ammonite can be achieved with

scala > import ammonite.ops._

scala > read(pwd / "file.name")
res1: String = """..."""

scala > write.over(pwd / "file.name", "foo bar")

For loading and accessing code from another Scala file, you can import it as
follows:

import $file.name-of-the-file
import name-of-the-file._

This assumes the other Scala file is called name-of-the-file.sc and requires
the file to be in the same directory where amm is working in. This will be very
convenient for the compiler we implement in CFL, because it allows us to easily
break‑up the code into the lexer, parser and code generator.

© Christian Urban, King’s College London, 2020
1Haskell, Rust, Ocaml were other languages that have been used previously in CFL. I recom‑

mend to not use Java or C for writing a compiler, but if you insist, feel free.

1

http://talisker.nms.kcl.ac.uk/cgi-bin/repos.cgi/pep-material/raw-file/tip/handouts/pep-ho.pdf
https://ammonite.io/#Ammonite-REPL

Another featurewhich exists inAmmonite, but not yet in the current version
of Scala (it will be in the next version called dotty) is that you canmark functions
as @main. For example

@main
def foo() = ...

This means you can now call that function from the command line like

$ amm file.sc foo

If youwant to specify an argument on the commandline, say an int and a string,
then you can write

@main
def bar(i: Int, s: String) = ...

and then call
$ amm file.sc 42 foobar

What is also good in Ammonite that you can specify more than one function to
be “main” and then specify on the command line which function do you want
to run as entry‑point.

To sum up, Ammonite is a really useful addition to the Scala ecosystem. You
can find more information about how to use it in the first five chapters of the
“Hands‑on Scala” book by Li Haoyi. These chapters are free and can be used
as a reference, see:

https://www.handsonscala.com/part-i-introduction-to-scala.html

2

https://www.handsonscala.com/part-i-introduction-to-scala.html

