
Handout 1

This course is about the processing of strings. Lets start with what we mean
by strings. Strings (they are also sometimes referred to as words) are lists of
characters drawn from an alphabet. If nothing else is specified, we usually as-
sume the alphabet consists of just the lower-case letters a, b, . . . , z. Sometimes,
however, we explicitly restrict strings to contain, for example, only the letters a
and b. In this case we say the alphabet is the set {a, b}.

There are many ways how we can write down strings. In programming
languages, they are usually written as "hello" where the double quotes indicate
that we dealing with a string. Essentially, strings are lists of characters which
can be written for example as follows

[h, e, l, l, o]

The important point is that we can always decompose strings. For example, we
will often consider the first character of a string, say h, and the “rest” of a string
say "ello" when making definitions about strings. There are some subtleties
with the empty string, sometimes written as "" but also as the empty list of
characters []. Two strings, for example s1 and s2, can be concatenated, which
we write as s1@s2. Suppose we are given two strings "foo" and "bar", then their
concatenation gives "foobar".

We often need to talk about sets of strings. For example the set of all strings
over the alphabet {a, . . . z} is

{"", "a", "b", "c",. . . ,"z", "aa", "ab", "ac", . . . , "aaa", . . . }

Any set of strings, not just the set-of-all-strings, is often called a language.
The idea behind this choice of terminology is that if we enumerate, say, all
words/strings from a dictionary, like

{"the", "of", "milk", "name", "antidisestablishmentarianism", . . . }

then we have essentially described the English language, or more precisely all
strings that can be used in a sentence of the English language. French would
be a different set of strings, and so on. In the context of this course, a language
might not necessarily make sense from a natural language point of view. For
example the set of all strings shown above is a language, as is the empty set (of
strings). The empty set of strings is often written as ∅ or { }. Note that there is a
difference between the empty set, or empty language, and the set that contains
only the empty string {""}: the former has no elements, whereas the latter has
one element.

As seen, there are languages which contain infinitely many strings, like the
set of all strings. The “natural” languages like English, French and so on con-
tain many but only finitely many strings (namely the ones listed in a good dic-
tionary). It might be therefore be surprising that the language consisting of

1

all email addresses is infinite provided we assume it is defined by the regular
expression1

([a-z0-9_.-]+)@([a-z0-9.-]+).([a-z.]{2,6})

The reason is that for example before the @-sign there can be any string you
want assuming it is made up from letters, digits, underscores, dots and hyphens—
clearly there are infinitely many of those. Similarly the string after the @-sign
can be any string. However, this does not mean that every string is an email
address. For example

foo@bar.c

is not, because the top-level-domains must be of length of at least two. (Note
that there is the convention that uppercase letters are treated in email-addresses
as if they were lower-case.)

Before we expand on the topic of regular expressions, let us review some
operations on sets. We will use capital letters A, B, . . . to stand for sets of
strings. The union of two sets is written as usual as A ∪ B. We also need to
define the operation of concatenating two sets of strings. This can be defined as

A@B
def
= {s1@s2|s1 ∈ A ∧ s2 ∈ B}

which essentially means take the first string from the set A and concatenate it
with every string in the set B, then take the second string from A do the same
and so on. You might like to think about what this definition means in case A
or B is the empty set.

We also need to define the power of a set, written as An with n being a
natural number. This is defined inductively as follows

A0 def
= {[]}

An+1 def
= A@An

Finally we need the star of a set of strings, written A∗. This is defined as the
union of every power of An with n ≥ 0. The mathematical notation for this
operation is

A∗ def
=

∪
0≤n

An

This definition implies that the star of a set A contains always the empty string
(that is A0), one copy of every string in A (that is A1), two copies in A (that is
A2) and so on. In case A = {”a”} we therefore have

A∗ = {””, ”a”, ”aa”, ”aaa”, . . .}
1See http://goo.gl/5LoVX7

2

http://goo.gl/5LoVX7

Be aware that these operations sometimes have quite non-intuitive properties,
for example

A ∪∅ = A
A ∪A = A
A ∪B = B ∪A

A@B ̸= B@A
A@∅ = ∅@A = ∅

A@{””} = {””}@A = A

∅∗ = {””}
{””}∗ = {””}

A⋆ = {””} ∪A ·A∗

Regular expressions are meant to conveniently describe languages...at least lan-
guages we are interested in in Computer Science. For example there is no con-
venient regular expression for describing the English language short of enumer-
ating all English words. But they seem useful for describing all permitted email
addresses, as seen above.

Regular expressions are given by the following grammar:

r ::= ∅ null
| ϵ empty string / "" / []
| c single character
| r1 · r2 sequence
| r1 + r2 alternative / choice
| r∗ star (zero or more)

Because we overload our notation there are some subtleties you should be
aware of. The letter c stands for any character from the alphabet at hand. Sec-
ond, we will use parentheses to disambiguate regular expressions. For example
we will write (r1 + r2)

∗, which is different from, say r1 + (r2)
∗. The former

means roughly zero or more times r1 or r2, while the latter means r1 or zero
or more times r2. We should also write (r1 + r2) + r3, which is different from
the regular expression r1 + (r2 + r3), but in case of + and · we actually do not
care about the order and just write r1 + r2 + r3, or r1 · r2 · r3, respectively. The
reasons for this will become clear shortly. In the literature you will often find
that the choice r1 + r2 is written as r1 | r2. Also following the convention in the
literature, we will in case of · even often omit it all together. For example the
regular expression for email addresses shown above is meant to be of the form

([. . .])+ ·@ · ([. . .])+ · . · . . .

meaning first comes a name (specified by the regular expression ([. . .])+), then
an @-sign, then a domain name (specified by the regular expression ([. . .])+),
then a top-level domain. Similarly if we want to specify the regular expression
for the string "hello" we should write

h · e · l · l · o

but often just write hello.
Another source of confusion might arise from the fact that we use the term

regular expressions for the ones used in “theory” and also the ones in “practice”.
In this course we refer by default to the regular expressions defined by the

3

grammar above. In “practice” we often use r+ to stand for one or more times,
\d to stand for a digit, r? to stand for an optional regular expression, or ranges
such as [a - z] to stand for any lower case letter from a to z. They are however
mere convenience as they can be seen as shorthand for

r+ 7→ r · r∗
r? 7→ ϵ+ r
\d 7→ 0 + 1 + 2 + . . .+ 9

[a - z] 7→ a+ b+ . . .+ z

We will see later that the not-regular-expression can also be seen as con-
venience. This regular expression is supposed to stand for every string not
matched by a regular expression. We will write such not-regular-expressions
as ∼ r. While being “convenience” it is often not so clear what the shorthand
for these kind of not-regular-expressions is. Try to write down the regular ex-
pression which can match any string except "hello" and "world". It is possible in
principle, but often it is easier to just include ∼ r in the definition or regular
expressions. Whenever we do so, we will state it explicitly.

So far we have only considered informally what the meaning of a regular
expression is. To do so more formally we will associate with every regular
expression a set of strings that is supposed to be are matched by this regular
expression. This can be defined recursively as follows

L(∅)
def
= { }

L(ϵ)
def
= {””}

L(c)
def
= {”c”}

L(r1 + r2)
def
= L(r1) ∪ L(r2)

L(r1 · r2)
def
= {s1@s2|s1 ∈ L(r1) ∧ s2 ∈ L(r2)}

L(r∗)
def
=

∪
n≥0 L(r)

n

This means we can now precisely state what the meaning, for example, of the
regular expression h · e · l · l ·o is, namely L(h · e · l · l ·o) = {"hello"}. Similarly if
we have the choice a+ b, the meaning is L(a+ b) = {"a", "b"}, namely the only
two strings which can possibly be matched by this choice.

The point of this definition is that we can now precisely specify when a
string is matched by a regular expression, namely a string, say s, is matched
by a regular expression, say r, if and only if s ∈ L(r). In fact we will write a
program match that takes any string s and any regular expression r as argument
and returns yes, if s ∈ L(r) and no, if s ̸∈ L(r). We leave this for the next lecture.

4

