
Automata and
Formal Languages (9)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also home work is there)

AFL 09, King’s College London, 28. November 2012 – p. 1/25



Imagine the following situation: You talk to
somebody and you find out that she/he has
implemented a compiler.
What is your reaction? Check all that apply.

� You think she/he is God
� Überhacker
� superhuman
� wizard
� supremo

AFL 09, King’s College London, 28. November 2012 – p. 2/25



Imagine the following situation: You talk to
somebody and you find out that she/he has
implemented a compiler.
What is your reaction? Check all that apply.

� You think she/he is God
� Überhacker
� superhuman
� wizard
� supremo

AFL 09, King’s College London, 28. November 2012 – p. 2/25



While-Language
Stmt → skip

| Id := AExp
| if BExp then Block else Block
| while BExp do Block
| write Id

Stmts → Stmt ; Stmts
| Stmt

Block → {Stmts}
| Stmt

AExp → . . .
BExp → . . .

AFL 09, King’s College London, 28. November 2012 – p. 3/25



Fibonacci Numbers
1 /* Fibonacci Program
2 input: n
3 output: fib_res */
4

5 n := 90;
6 minus1 := 0;
7 minus2 := 1;
8 temp := 0;
9 while n > 0 do {

10 temp := minus2;
11 minus2 := minus1 + minus2;
12 minus1 := temp;
13 n := n - 1
14 };
15 fib_res := minus2;
16 write fib_res

AFL 09, King’s College London, 28. November 2012 – p. 4/25



Interpreter

eval(n,E)
def
= n

eval(x,E)
def
= E(x) lookup x in E

eval(a1 + a2, E)
def
= eval(a1, E) + eval(a2, E)

eval(a1 − a2, E)
def
= eval(a1, E)− eval(a2, E)

eval(a1 ∗ a2, E)
def
= eval(a1, E) ∗ eval(a2, E)

eval(a1 = a2, E)
def
= eval(a1, E) = eval(a2, E)

eval(a1 != a2, E)
def
= ¬(eval(a1, E) = eval(a2, E))

eval(a1 < a2, E)
def
= eval(a1, E) < eval(a2, E)

AFL 09, King’s College London, 28. November 2012 – p. 5/25



Interpreter (2)

eval(skip, E)
def
= E

eval(x := a,E)
def
= E(x 7→ eval(a,E))

eval(if b then cs1 else cs2, E)
def
=

if eval(b, E) then eval(cs1, E)
else eval(cs2, E)

eval(while b do cs, E)
def
=

if eval(b, E)
then eval(while b do cs, eval(cs, E))
else E

eval(print x,E)
def
= { println(E(x)) ; E }

AFL 09, King’s College London, 28. November 2012 – p. 6/25



Test Program
1 start := 1;
2 x := start;
3 y := start;
4 z := start;
5 while 0 < x do {
6 while 0 < y do {
7 while 0 < z do {
8 z := z - 1
9 };

10 z := start;
11 y := y - 1
12 };
13 y := start;
14 x := x - 1
15 };
16 write x;
17 write y;
18 write z

AFL 09, King’s College London, 28. November 2012 – p. 7/25



Interpreted Code

200 400 600 800 1,0001,2001,400

100

200

300

n

se
cs

AFL 09, King’s College London, 28. November 2012 – p. 8/25



Java Virtual Machine

introduced in 1995
is a stack-based VM (like Postscript, CLR of .Net)
contains a JIT compiler
many languages take advantage of the
infrastructure (JRE)
languages compiled to the JVM: Scala, Clojure. . .
garbage collected

AFL 09, King’s College London, 28. November 2012 – p. 9/25



Compiling AExps
1 + 2

ldc 1
ldc 2
iadd

AFL 09, King’s College London, 28. November 2012 – p. 10/25



Compiling AExps
1 + 2 + 3

ldc 1
ldc 2
iadd
ldc 3
iadd

AFL 09, King’s College London, 28. November 2012 – p. 11/25



Compiling AExps
1 + (2 + 3)

ldc 1
ldc 2
ldc 3
iadd
iadd

dadd, fadd, ladd, . . .

AFL 09, King’s College London, 28. November 2012 – p. 12/25



Compiling AExps
1 + (2 + 3)

ldc 1
ldc 2
ldc 3
iadd
iadd

dadd, fadd, ladd, . . .

AFL 09, King’s College London, 28. November 2012 – p. 12/25



Compiling AExps

compile(n) def
= ldc n

compile(a1 + a2)
def
=

compile(a1) @ compile(a2) @ iadd

compile(a1 − a2)
def
=

compile(a1) @ compile(a2) @ isub

compile(a1 ∗ a2)
def
=

compile(a1) @ compile(a2) @ imul

AFL 09, King’s College London, 28. November 2012 – p. 13/25



Compiling AExps

compile(n) def
= ldc n

compile(a1 + a2)
def
=

compile(a1) @ compile(a2) @ iadd

compile(a1 − a2)
def
=

compile(a1) @ compile(a2) @ isub

compile(a1 ∗ a2)
def
=

compile(a1) @ compile(a2) @ imul

AFL 09, King’s College London, 28. November 2012 – p. 13/25



Compiling AExps
1 + 2 * 3 + (4 - 3)

ldc 1
ldc 2
ldc 3
imul
ldc 4
ldc 3
isub
iadd
iadd

AFL 09, King’s College London, 28. November 2012 – p. 14/25



Variables
x := 5 + y ∗ 2

lookup: iload number

store: istore number

during compilation we have to maintain a map
between our identifiers and the java bytecode
numbers

compile(a,E)

AFL 09, King’s College London, 28. November 2012 – p. 15/25



Variables
x := 5 + y ∗ 2

lookup: iload number

store: istore number

during compilation we have to maintain a map
between our identifiers and the java bytecode
numbers

compile(a,E)

AFL 09, King’s College London, 28. November 2012 – p. 15/25



Variables
x := 5 + y ∗ 2

lookup: iload number

store: istore number

during compilation we have to maintain a map
between our identifiers and the java bytecode
numbers

compile(a,E)

AFL 09, King’s College London, 28. November 2012 – p. 15/25



Compiling AExps

compile(n,E)
def
= ldc n

compile(a1 + a2, E)
def
=

compile(a1, E) @ compile(a2.E) @ iadd

compile(a1 − a2, E)
def
=

compile(a1, E) @ compile(a2, E) @ isub

compile(a1 ∗ a2, E)
def
=

compile(a1, E) @ compile(a2, E) @ imul

compile(x,E)
def
= iload E(x)

AFL 09, King’s College London, 28. November 2012 – p. 16/25



Compiling AExps

compile(n,E)
def
= ldc n

compile(a1 + a2, E)
def
=

compile(a1, E) @ compile(a2.E) @ iadd

compile(a1 − a2, E)
def
=

compile(a1, E) @ compile(a2, E) @ isub

compile(a1 ∗ a2, E)
def
=

compile(a1, E) @ compile(a2, E) @ imul

compile(x,E)
def
= iload E(x)

AFL 09, King’s College London, 28. November 2012 – p. 16/25



Compiling Statements
We return a list of instructions and an
environment for the variables

compile(skip, E)
def
= (Nil, E)

compile(x := a,E)
def
=

(compile(a,E) @ istore index, E(x 7→ index))

where index is E(x) if it is already defined, or if
it is not then the largest index not yet seen

AFL 09, King’s College London, 28. November 2012 – p. 17/25



Compiling AExps
x := x + 1

iload nx

ldc 1
iadd
istore nx

where nx is the number corresponding to the
variable x

AFL 09, King’s College London, 28. November 2012 – p. 18/25



Compiling Ifs
if b else cs1 then cs2

Case

code of b code of cs1 code of cs2

AFL 09, King’s College London, 28. November 2012 – p. 19/25



Compiling Ifs
if b else cs1 then cs2

Case True:

code of b code of cs1 code of cs2

jump

AFL 09, King’s College London, 28. November 2012 – p. 19/25



Compiling Ifs
if b else cs1 then cs2

Case False:

code of b code of cs1 code of cs2

conditional jump

AFL 09, King’s College London, 28. November 2012 – p. 19/25



Conditional Jumps
if_icmpeq label if two ints are equal, then jump

if_icmpne label if two ints aren’t equal, then jump

if_icmpge label if one int is greater or equal then
another, then jump
. . .

L1:
if_icmpeq L2

iload 1
ldc 1
iadd
if_icmpeq L1

L1:

AFL 09, King’s College London, 28. November 2012 – p. 20/25



Conditional Jumps
if_icmpeq label if two ints are equal, then jump

if_icmpne label if two ints aren’t equal, then jump

if_icmpge label if one int is greater or equal then
another, then jump
. . .

L1:
if_icmpeq L2

iload 1
ldc 1
iadd
if_icmpeq L1

L1:
AFL 09, King’s College London, 28. November 2012 – p. 20/25



Compiling BExps
a1 = a2

iload nx

ldc 1
iadd
istore nx

AFL 09, King’s College London, 28. November 2012 – p. 21/25



Compiling Ifs
if b then cs1 else cs2

iload nx

ldc 1
iadd
istore nx

AFL 09, King’s College London, 28. November 2012 – p. 22/25



Compiling Whiles
while b do cs

Case

code of b code of cs

AFL 09, King’s College London, 28. November 2012 – p. 23/25



Compiling Whiles
while b do cs

Case True:

code of b code of cs

AFL 09, King’s College London, 28. November 2012 – p. 23/25



Compiling Whiles
while b do cs

Case False:

code of b code of cs

AFL 09, King’s College London, 28. November 2012 – p. 23/25



Compiling Whiles
while b do cs

iload nx

ldc 1
iadd
istore nx

AFL 09, King’s College London, 28. November 2012 – p. 24/25



Compiling Writes
write x

iload nx

ldc 1
iadd
istore nx

AFL 09, King’s College London, 28. November 2012 – p. 25/25



Compiled vs. Interpreted Code

103 104 105 106

101

102

n

se
cs

AFL 09, King’s College London, 28. November 2012 – p. 26/25



Compiled Code

0.2 0.4 0.6 0.8 1
·106

100

200

300

n

se
cs

AFL 09, King’s College London, 28. November 2012 – p. 27/25


