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Imagine the following situation: You talk to
somebody and you find out that she/he has
implemented a compiler.
What is your reaction? Check all that apply.

� You think she/he is God
� Überhacker
� superhuman
� wizard
� supremo
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While-Language
Stmt → skip

| Id := AExp
| if BExp then Block else Block
| while BExp do Block
| write Id

Stmts → Stmt ; Stmts
| Stmt

Block → {Stmts}
| Stmt

AExp → . . .
BExp → . . .
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Fibonacci Numbers
1 /* Fibonacci Program
2 input: n
3 output: fib_res */
4

5 n := 90;
6 minus1 := 0;
7 minus2 := 1;
8 temp := 0;
9 while n > 0 do {

10 temp := minus2;
11 minus2 := minus1 + minus2;
12 minus1 := temp;
13 n := n - 1
14 };
15 fib_res := minus2;
16 write fib_res
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Interpreter

eval(n,E)
def
= n

eval(x,E)
def
= E(x) lookup x in E

eval(a1 + a2, E)
def
= eval(a1, E) + eval(a2, E)

eval(a1 − a2, E)
def
= eval(a1, E)− eval(a2, E)

eval(a1 ∗ a2, E)
def
= eval(a1, E) ∗ eval(a2, E)

eval(a1 = a2, E)
def
= eval(a1, E) = eval(a2, E)

eval(a1 != a2, E)
def
= ¬(eval(a1, E) = eval(a2, E))

eval(a1 < a2, E)
def
= eval(a1, E) < eval(a2, E)
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Interpreter (2)

eval(skip, E)
def
= E

eval(x := a,E)
def
= E(x 7→ eval(a,E))

eval(if b then cs1 else cs2, E)
def
=

if eval(b, E) then eval(cs1, E)
else eval(cs2, E)

eval(while b do cs, E)
def
=

if eval(b, E)
then eval(while b do cs, eval(cs, E))
else E

eval(print x,E)
def
= { println(E(x)) ; E }
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Test Program
1 start := 1;
2 x := start;
3 y := start;
4 z := start;
5 while 0 < x do {
6 while 0 < y do {
7 while 0 < z do {
8 z := z - 1
9 };

10 z := start;
11 y := y - 1
12 };
13 y := start;
14 x := x - 1
15 };
16 write x;
17 write y;
18 write z
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Interpreted Code
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Java Virtual Machine

introduced in 1995
is a stack-based VM (like Postscript, CLR of .Net)
contains a JIT compiler
many languages take advantage of the
infrastructure (JRE)
languages compiled to the JVM: Scala, Clojure. . .
garbage collected
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Compiling AExps
1 + 2

ldc 1
ldc 2
iadd
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Compiling AExps
1 + 2 + 3

ldc 1
ldc 2
iadd
ldc 3
iadd
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Compiling AExps
1 + (2 + 3)

ldc 1
ldc 2
ldc 3
iadd
iadd

dadd, fadd, ladd, . . .
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Compiling AExps

compile(n) def
= ldc n

compile(a1 + a2)
def
=

compile(a1) @ compile(a2) @ iadd

compile(a1 − a2)
def
=

compile(a1) @ compile(a2) @ isub

compile(a1 ∗ a2)
def
=

compile(a1) @ compile(a2) @ imul
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Compiling AExps
1 + 2 * 3 + (4 - 3)

ldc 1
ldc 2
ldc 3
imul
ldc 4
ldc 3
isub
iadd
iadd
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Variables
x := 5 + y ∗ 2

lookup: iload number

store: istore number

during compilation we have to maintain a map
between our identifiers and the java bytecode
numbers

compile(a,E)
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Compiling AExps
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Compiling Statements
We return a list of instructions and an
environment for the variables

compile(skip, E)
def
= (Nil, E)

compile(x := a,E)
def
=

(compile(a,E) @ istore index, E(x 7→ index))

where index is E(x) if it is already defined, or if
it is not then the largest index not yet seen
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Compiling AExps
x := x + 1

iload nx

ldc 1
iadd
istore nx

where nx is the number corresponding to the
variable x
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Compiling Ifs
if b else cs1 then cs2

Case

code of b code of cs1 code of cs2
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Compiling Ifs
if b else cs1 then cs2

Case True:

code of b code of cs1 code of cs2

jump
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Compiling Ifs
if b else cs1 then cs2

Case False:

code of b code of cs1 code of cs2

conditional jump
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Conditional Jumps
if_icmpeq label if two ints are equal, then jump

if_icmpne label if two ints aren’t equal, then jump

if_icmpge label if one int is greater or equal then
another, then jump
. . .

L1:
if_icmpeq L2

iload 1
ldc 1
iadd
if_icmpeq L1

L1:
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Compiling BExps
a1 = a2

iload nx

ldc 1
iadd
istore nx
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Compiling Ifs
if b then cs1 else cs2

iload nx

ldc 1
iadd
istore nx

AFL 09, King’s College London, 28. November 2012 – p. 22/25



Compiling Whiles
while b do cs

Case

code of b code of cs
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Compiling Whiles
while b do cs

Case True:

code of b code of cs
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Compiling Whiles
while b do cs

Case False:

code of b code of cs
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Compiling Whiles
while b do cs

iload nx

ldc 1
iadd
istore nx
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Compiling Writes
write x

iload nx

ldc 1
iadd
istore nx
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Compiled vs. Interpreted Code
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Compiled Code
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