Handout 3 (Automata)

Every formal language course I know of bombards you first with automata and
then to a much, much smaller extend with regular expressions. As you can see,
this course is turned upside down: regular expressions come first. The reason
is that regular expressions are easier to reason about and the notion of deriva-
tives, although already quite old, only became more widely known rather re-
cently. Still let us in this lecture have a closer look at automata and their relation
to regular expressions. This will help us with understanding why the regular
expression matchers in Python and Ruby are so slow with certain regular ex-
pressions. The central definition is:

A deterministic finite automaton (DFA), say A, is defined by a four-tuple written
A(Q, 90, F, 8) where

* (Jis a finite set of states,

* go € Qs the start state,

e F C Q are the accepting states, and
* J is the transition function.

The transition function determines how to “transition” from one state to the
next state with respect to a character. We have the assumption that these tran-
sition functions do not need to be defined everywhere: so it can be the case that
given a character there is no next state, in which case we need to raise a kind of
“failure exception”. A typical example of a DFA is

a a
start ——>{ 0 —>{ 71 —>(94)T D a,b

In this graphical notation, the accepting state g4 is indicated with double circles.
Note that there can be more than one accepting state. It is also possible that a
DFA has no accepting states at all, or that the starting state is also an accepting
state. In the case above the transition function is defined everywhere and can
be given as a table as follows:

(q0,4) — @
(q0,0) — @
(q1,0) — 4
(qlrb) - 2
(q2,0) — a3
(q2,0) — @
(q3,4) — 4
(q3,b) — qo
(qa,0) — a4
(94,0) — qa

We need to define the notion of what language is accepted by an automaton.
For this we lift the transition function é from characters to strings as follows:

2 def

oal) = a

(g oo def &

0(g,czs) = 0(6(q,¢),9)
This lifted transition function is often called “delta-hat”. Given a string, we start
in the starting state and take the first character of the string, follow to the next
sate, then take the second character and so on. Once the string is exhausted and
we end up in an accepting state, then this string is accepted by the automaton.
Otherwise it is not accepted. So s is in the language accepted by the automaton

A(Q/ qo, PI 5) iff

S(qo,s) eF

I'let you think about a definition that describes the set of strings accepted by an
automaton.

While with DFAs it will always clear that given a character what the next
state is (potentially none), it will be useful to relax this restriction. That means
we have several potential successor states. We even allow “silent transitions”,
also called epsilon-transitions. They allow us to go from one state to the next
without having a character consumed. We label such silent transition with the
letter €. The resulting construction is called a non-deterministic finite automaton
(NFA) given also as a four-tuple A(Q, qo, F, p) where

* (is a finite set of states
® g is a start state
¢ F are some accepting states with F C Q, and

* pis a transition relation.

Two typical examples of NFAs are

There are, however, a number of points you should note. Every DFA is a NFA,
but not vice versa. The p in NFAs is a transition relation (DFAs have a transition
function). The difference between a function and a relation is that a function
has always a single output, while a relation gives, roughly speaking, several
outputs. Look at the NFA on the right-hand side above: if you are currently in
the state r, and you read a character g, then you can transition to either r; or
r3. Which route you take is not determined. This means if we need to decide
whether a string is accepted by a NFA, we might have to explore all possibilities.
Also there is the special silent transition in NFAs. As mentioned already this
transition means you do not have to “consume” any part of the input string,
but “silently” change to a different state. In the left picture, for example, if you
are in the starting state, you can silently move either to q; or g».

Thompson Construction

The reason for introducing NFAs is that there is a relatively simple (recursive)
translation of regular expressions into NFAs. Consider the simple regular ex-
pressions &, € and c. They can be translated as follows:

%) start ()

€ start »0)
c start —>O—C>©

The case for the sequence regular expression 1 - r is as follows: We are given
by recursion two automata representing r; and r respectively.

start

The first automaton has some accepting states. We obtain an automaton for
11 - 1o by connecting these accepting states with e-transitions to the starting state
of the second automaton. By doing so we make them non-accepting like so:

r -1

e ©
start > @
c ©

The case for the choice regular expression 71 + r, is slightly different: We are
given by recursion two automata representing ry and r, respectively.

&

start —()

©0©

2

start —()

©0©0©

Each automaton has a single start state and potentially several accepting states.
We obtain a NFA for the regular expression rq + o by introducing a new start-
ing state and connecting it with an e-transition to the two starting states above,
like so

r+12

start

Q00 ©O0 0

A

Finally for the *-case we have an automaton for r

and connect its accepting states to a new starting state via e-transitions. This
new starting state is also an accepting state, because r* can recognise the empty
string. This gives the following automaton for r*:

start

This construction of a NFA from a regular expression was invented by Ken
Thompson in 1968.

Subset Construction

What is interesting that for every NFA we can find a DFA which recognises the
same language. This can be done by the subset construction. Consider again the
NFA on the left, consisting of nodes labeled 0, 1 and 2.

(v
1 nodes a b
%) %) %)
T o}y | {012} {2}
{1} {1t o
start (0 JDa {2} gz {2}
|
2
U
b

{o,1} | {0,1,2} {2}
{0,2}% | {0,1,2} {2}
{2} | {1} {2}
s: {0,1,2}% | {0,1,2} {2}

The nodes of the DFA are given by calculating all subsets of the set of nodes of
the NFA (seen in the nodes column on the right). The table shows the transition
function for the DFA. The first row states that & is the sink node which has
transitions for a and b to itself. The next three lines are calculated as follows:

* suppose you calculate the entry for the transition for a2 and the node {0}
¢ start from the node 0 in the NFA

* do as many e-transition as you can obtaining a set of nodes, in this case
{0,1,2}

e filter out all notes that do not allow an a-transition from this set, this ex-
cludes 2 which does not permit a a-transition

¢ from the remaining set, do as many e-transition as you can, this yields
{0,1,2}

e the resulting set specifies the transition from {0} when given an a

Similarly for the other entries in the rows for {0}, {1} and {2}. The other rows
are calculated by just taking the union of the single node entries. For example
for a and {0, 1} we need to take the union of {0,1,2} (for 0) and {1} (for 1). The
starting state of the DFA can be calculated from the starting state of the NFA,
that is 0, and then do as many e-transitions as possible. This gives {0,1,2}
which is the starting state of the DFA. One terminal states in the DFA are given
by all sets that contain a 2, which is the terminal state of the NFA. This completes
the subset construction.

There are two points to note: One is that the resulting DFA contains a num-
ber of “dead” nodes that are never reachable from the starting state (that is that
the calculated DFA in this example is not a minimal DFA). Such dead nodes
can be safely removed without changing the language that is recognised by the
DFA. Another point is that in some cases the subset construction produces a
DFA that does not contain any dead nodes...that means it calculates a minimal

DFA. Which in turn means that in some cases the number of nodes by going
from NFAs to DFAs exponentially increases, namely by 2" (which is the num-
ber of subsets you can form for n nodes).

Brzozowski’s Method
Automata Minimization

Regular Languages and Automata

